Crypto Basics

What are NFTs? NFT Art Explained | Future of NFTs

Learn more about NFTs and their future.
Token Metrics Team
6 minutes
MIN

You may have heard of CryptoPunks, Bored Ape Yacht Club, and VeeFriends, but you may not understand what they are. These names may sound like random combinations of words, but they actually represent some of the most valuable non-fungible token (NFT) projects that have emerged in the past few years.

The world of crypto art and NFTs may appear complex and mysterious, with a mix of celebrities, influencers, and internet experts. But it's not as confusing as it seems. Let's start from the beginning.

What Is An NFT?

Nearly all crypto art that has been introduced to the market has been done so through the minting of non-fungible tokens (NFTs). NFTs are digital assets that have verified proof of ownership. While "fungible tokens" like the US dollar can be easily traded (like exchanging 4 quarters for a dollar), each NFT is unique and cannot be easily traded. For example, imagine a sketch of "Starry Night" by Vincent Van Gogh that has been authenticated by a fine art appraiser as an original. This sketch would be non-fungible because you could not easily exchange it for, say, an original sketch by Leonardo da Vinci. This concept is easy to understand with tangible items like art pieces or collectible cards, but when digital assets can range from a celebrity tweet to an iconic meme to a picture of a pimped out animated ape, it may be confusing.

How Can We Ensure Unique Authenticity?

This is where NFTs enter the scene. Say you are a graphic design artist who just finished your newest 1-of-1 piece of work and you want to sell it as an NFT. Whoever purchases this piece would not only receive the artwork but they would also receive a “digital receipt” that proves that this exact piece is original, unique and authentic.

“But What If I Just Screenshot This Digital Artwork? Wouldn’t I Technically Own the Piece as Well?”

This is the first question that many have mockingly asked on social media and internet forums. The easy answer: yes, you can screenshot practically all digital artwork, but no, that does not mean you own it.

For example, millions of people swarm into the Louvre every year, waiting patiently amidst a giddy crowd, just to capture a picture of the priceless Mona Lisa. Obviously, a picture of the Mona Lisa saved on your iPhone camera roll does not mean that you own that painting.

NFTs work the same way.

Just as the Louvre paid millions of dollars to own, maintain, and display the Mona Lisa in their museum, NFT buyers do the same. However, the main difference is that instead of paying dollars to house the art in a fancy museum, they are paying with cryptocurrency and housing their art in a virtual showcase, so to speak.

This is the basis for how NFTs, cryptocurrency, and blockchain technology are establishing a new and lucrative market for digital art and artists.

The Art of Being Digital

In a 2021 interview, Gary Vaynerchuk (founder of Vayner Media and creator of VeeFriends) made the following statement regarding NFTs. The interviewer remarks on the tangibility of NFTs stating, "the digital aspect, like, you can't see it" — Gary jumps in:

"Well, you can't see a blue check on Instagram? I don't walk around the world with a blue check tattooed on my forehead, but everybody sees it. You can't see my 9 million followers on Instagram, or can you? I would argue the reverse. I would argue that people can't see most of the fancy things you have in your house; that people can see more digital than real life."

And he's onto something, and I'd like to call that something "The Art of Being Digital". In our highly digitized world, our online outreach and interconnectivity is wildly amplified. Gary Vee currently has 9.9 million followers on Instagram — but without access to the internet — he has no way of interacting with that community and tapping into the true power of those 9.9 million people.

Why Do NFTs Have Value?

The value of an NFT is determined by the collective intentionality of those who are willing to buy and sell them. In other words, the value of an NFT is based on what people are willing to pay for it. This is similar to the way that the value of traditional art is determined by the market, with the value being based on factors such as the artist's fame and the rarity of the work.

The Tom Brady example illustrates this idea. On the surface, it might seem strange that someone would pay $430k for a digital picture of a cartoon ape. However, if we consider the fact that the buyer was Tom Brady and the seller was the well-known digital artist Trevor Jones, it becomes clearer that the value of the NFT was determined by the collective intentionality of those involved in the transaction.

Furthermore, the digital art of NFTs offers more than just a digital file and a high price tag. NFTs provide the ability for digital artists to monetize their work and for collectors to own and trade unique digital items. This opens up new opportunities for artists and collectors alike, and has led to the growth of a vibrant and exciting market for NFTs.

Join The Club

Celebrities such as Tom Brady, Post Malone, Steph Curry, and Jimmy Fallon have been buying Bored Ape NFTs. Bored Ape NFTs were introduced by the Bored Ape Yacht Club (BAYC) in April 2021 at a price of 0.08 Ethereum (ETH) each, or about $190 at the time. Since then, the price of Bored Apes has increased significantly, yielding substantial returns for early investors.

In addition to the potential for financial gain, buying a Bored Ape NFT also grants the buyer access to the BAYC community. This includes access to the BAYC Discord, where buyers can connect with other members of the club, including celebrities, and collaborate on NFT-related projects. BAYC also gives members priority access to future NFT drops, allowing them to expand their collections.

Minting and selling NFTs can also be highly lucrative for those who create their own NFT projects. This is another reason why celebrities and others may be interested in the NFT market. Creating and selling NFTs allows artists and other creators to monetize their digital work and gives collectors the opportunity to own unique digital items. The growth of the NFT market has created new opportunities for both artists and collectors, leading to a vibrant and exciting market for NFTs.

Blockchain, Smart Contracts, and Secondary Sales

Blockchain technology is used to record the conversion of traditional currency into cryptocurrency, such as Ethereum (ETH), in the NFT market. This transaction is recorded on the blockchain as public information that is easily accessible to anyone who wants to view it. This ensures transparency and helps to prevent fraud in the NFT market.

Smart contracts are programs stored on the blockchain that allow NFT creators to stipulate the conditions of resale. For example, a creator could draft a smart contract that allows them to earn a 10% commission on any subsequent resales of their NFT. This allows creators to continue to benefit from the success of their work, even after the initial sale.

Smart contracts also facilitate secondary sales in the NFT market. When the value of an NFT increases, the smart contract associated with that NFT can automatically distribute any profits from the sale to the relevant parties, such as the creator or the NFT platform. For example, if the value of Tom Brady's Bored Ape NFT increased from $430k to $530k, the smart contract could automatically distribute the $100k profit to the Bored Ape Yacht Club, if that was stipulated in the contract.

This use of smart contracts helps to ensure that all parties are fairly compensated for their contributions to the NFT market, and it allows for efficient and transparent transactions without the need for intermediaries.

The Future Of Crypto-Art

Grammy-winning artist Tyler, the Creator recently questioned the value of NFTs, stating that most of the examples he has seen are not "beautiful art." While art is subjective and many NFTs are AI-generated, there are still many ways in which NFTs can offer value in the real world.

First, NFTs can be used to represent tangible experiences and achievements. Instead of framing a concert ticket or a season pass, these items could be represented as NFTs, allowing individuals to proudly display their experiences and achievements in the digital world. This could be especially beneficial for VIP experiences and exclusive memberships.

Second, NFTs can provide a level of authenticity and scarcity that cannot be achieved with physical items. This is especially useful for limited edition items and collectibles, which can be authenticated and traded easily on the blockchain.

Third, the use of smart contracts can ensure that all parties are fairly compensated for their contributions to the NFT market. This allows for transparent and efficient transactions without the need for intermediaries.

Overall, while some may dismiss NFTs as "silly little digital artworks," they have the potential to reshape not just the art world, but the world itself.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

How REST APIs Power Modern Web & AI Integrations

Token Metrics Team
5
MIN

REST API technology underpins much of today’s web, mobile, and AI-driven systems. Understanding REST fundamentals, design trade-offs, and operational patterns helps engineers build reliable integrations that scale, remain secure, and are easy to evolve. This article breaks down the core concepts, practical design patterns, and concrete steps to integrate REST APIs with AI and data platforms.

What is a REST API?

REST (Representational State Transfer) is an architectural style for distributed systems that uses standard HTTP methods to operate on resources. A REST API exposes resources—such as users, orders, or sensor readings—via predictable endpoints and leverages verbs like GET, POST, PUT, PATCH, and DELETE. Key characteristics include statelessness, resource-based URIs, and standardized status codes. These conventions make REST APIs easy to consume across languages, frameworks, and platforms.

Design Principles and Best Practices

Good REST API design balances clarity, stability, and flexibility. Consider these practical principles:

  • Resource-first URIs: Use nouns for endpoints (e.g., /api/v1/orders) and avoid verbs in URLs.
  • HTTP semantics: Use GET for reads, POST to create, PUT/PATCH to update, and DELETE to remove; rely on status codes for outcome signaling.
  • Versioning: Introduce versioning (path or header) to manage breaking changes without disrupting consumers.
  • Pagination and filtering: Design for large datasets with limit/offset or cursor-based pagination and clear filtering/query parameters.
  • Consistent error models: Return structured errors with codes and messages to simplify client-side handling.

Document endpoints using OpenAPI/Swagger and provide sample requests/responses. Clear documentation reduces integration time and surface area for errors.

Security, Rate Limits, and Monitoring

Security and observability are central to resilient APIs. Common patterns include:

  • Authentication & Authorization: Use token-based schemes such as OAuth2 or API keys for machine-to-machine access. Scope tokens to limit privileges.
  • Rate limiting: Protect backend services with configurable quotas and burst controls. Communicate limits via headers and provide informative 429 responses.
  • Input validation and sanitization: Validate payloads and enforce size limits to reduce attack surface.
  • Encryption: Enforce TLS for all transport and consider field-level encryption for sensitive data.
  • Monitoring and tracing: Emit metrics (latency, error rates) and distributed traces to detect regressions and bottlenecks early.

Operational readiness often separates reliable APIs from fragile ones. Integrate logging and alerting into deployment pipelines and validate SLAs with synthetic checks.

Testing, Deployment, and API Evolution

APIs should be treated as products with release processes and compatibility guarantees. Recommended practices:

  • Contract testing: Use tools that assert provider and consumer compatibility to avoid accidental breaking changes.
  • CI/CD for APIs: Automate linting, unit and integration tests, and schema validation on every change.
  • Backward-compatible changes: Additive changes (new endpoints, optional fields) are safer than renames or removals. Use deprecation cycles for major changes.
  • Sandbox environments: Offer test endpoints and data so integrators can validate integrations without impacting production.

Following a disciplined lifecycle reduces friction for integrators and supports long-term maintainability.

Integrating REST APIs with AI and Crypto Data

REST APIs serve as the connective tissue between data sources and AI/analytics systems. Patterns to consider:

  • Feature pipelines: Expose REST endpoints for model features or use APIs to pull time-series data into training pipelines.
  • Model inference: Host inference endpoints that accept JSON payloads and return predictions with confidence metadata.
  • Data enrichment: Combine multiple REST endpoints for on-demand enrichment—e.g., combine chain analytics with market metadata.
  • Batch vs. realtime: Choose between batch pulls for training and low-latency REST calls for inference or agent-based workflows.

AI-driven research platforms and data providers expose REST APIs to make on-chain, market, and derived signals available to models. For example, AI-driven research tools such as Token Metrics provide structured outputs that can be integrated into feature stores and experimentation platforms.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is REST vs. other API styles?

REST is an architectural style that uses HTTP and resource-oriented design. Alternatives include RPC-style APIs, GraphQL (which offers a single flexible query endpoint), and gRPC (binary, high-performance RPC). Choose based on latency, schema needs, and client diversity.

How should I secure a REST API for machine access?

Use token-based authentication (OAuth2 client credentials or API keys), enforce TLS, implement scopes or claims to limit access, and rotate credentials periodically. Apply input validation, rate limits, and monitoring to detect misuse.

When should I version an API?

Version when making breaking changes to request/response contracts. Prefer semantic versioning and provide both current and deprecated versions in parallel during transition windows to minimize client disruption.

What tools help test and document REST APIs?

OpenAPI/Swagger for documentation, Postman for manual testing, Pact for contract testing, and CI plugins for schema validation and request/response snapshots are common. Automated tests should cover happy and edge cases.

How do I implement rate limiting without harming UX?

Use tiered limits with burst capacity, return informative headers (remaining/quota/reset), and provide fallback behavior (cached responses or graceful degradation). Communicate limits in documentation so integrators can design around them.

Disclaimer

The information in this article is educational and technical in nature. It is not professional, legal, or financial advice. Readers should perform their own due diligence when implementing systems and choosing vendors.

Research

Practical Guide to Building Robust REST APIs

Token Metrics Team
5
MIN

REST APIs power modern web and mobile applications by providing a consistent, scalable way to exchange data. Whether you are integrating microservices, powering single-page apps, or exposing data for third-party developers, understanding REST architecture, design norms, and operational considerations is essential to build reliable services.

Overview: What a REST API Is and When to Use It

Representational State Transfer (REST) is an architectural style that leverages standard HTTP methods to manipulate resources represented as URLs. A REST API typically exposes endpoints that return structured data (commonly JSON) and uses verbs like GET, POST, PUT/PATCH, and DELETE to indicate intent. REST is not a protocol; it is a set of constraints—statelessness, uniform interface, and resource-based modeling—that make APIs predictable and cache-friendly.

When evaluating whether to build a REST API, consider use cases: straightforward CRUD operations, broad client compatibility, and caching benefit from REST. If you need strong typing, real-time streaming, or more efficient batching, compare REST to alternatives like GraphQL, gRPC, or WebSockets before deciding.

Designing RESTful Endpoints & Best Practices

Good API design starts with resource modeling and clear, consistent conventions. Practical guidelines include:

  • Resource naming: Use plural nouns for resource collections (e.g., /users, /orders) and hierarchical paths for relationships (/users/{id}/orders).
  • HTTP methods: Map actions to verbs—GET for retrieval, POST for creation, PUT/PATCH for updates, DELETE for removals.
  • Status codes: Return appropriate HTTP status codes (200, 201, 204, 400, 401, 403, 404, 429, 500) and include machine-readable error payloads for clients.
  • Versioning: Prefer URI versioning (/v1/) or content negotiation via headers; plan for backward compatibility to avoid breaking clients.
  • Pagination & filtering: Provide limit/offset or cursor-based pagination and consistent filter/query parameters to support large datasets.
  • Documentation: Maintain up-to-date, example-driven docs (OpenAPI/Swagger) and publish clear request/response schemas.

These conventions improve discoverability and reduce integration friction for third-party developers and internal teams alike.

Security & Authentication for REST APIs

Security is a primary operational concern. REST APIs must protect data in transit and enforce access controls. Key controls include:

  • Transport Layer Security (TLS): Enforce HTTPS for all endpoints and redirect HTTP to HTTPS to prevent eavesdropping and man-in-the-middle attacks.
  • Authentication: Use established schemes such as OAuth 2.0, JWTs, or API keys depending on client types. Short-lived tokens and refresh flows reduce risk from token leakage.
  • Authorization: Implement fine-grained access checks (role-based or attribute-based) server-side; never rely on client-side enforcement.
  • Input validation & rate limiting: Validate and sanitize inputs to avoid injection attacks, and apply throttles to mitigate abuse and DoS threats.
  • Secrets management: Store credentials and private keys in secure vaults and rotate them regularly.

For teams integrating crypto or blockchain data, AI-driven research platforms can automate risk scanning and anomaly detection. For example, Token Metrics provides analytical signals that teams can cross-reference with on-chain activity when modeling API access patterns.

Performance, Testing, and Deployment

Operational resilience depends on performance engineering and testing. Practical steps include:

  • Caching: Use HTTP cache headers (ETag, Cache-Control) and CDN layering for public, cacheable endpoints.
  • Load testing: Simulate realistic traffic shapes, including burst behavior, to size servers and tune autoscaling rules.
  • Observability: Emit structured logs, request traces, and metrics (latency, error rates) and instrument distributed tracing (OpenTelemetry) for root-cause analysis.
  • CI/CD & contract testing: Automate schema validations, run contract tests against staging environments, and promote releases only when compatibility checks pass.
  • Graceful degradation: Handle downstream failures with timeouts, retries with backoff, and circuit breakers to avoid cascading outages.

Adopt a measurable SLA approach and define clear error budgets to balance feature velocity and reliability.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is a REST API?

A REST API is an application programming interface that follows REST constraints. It exposes resources via URIs and uses HTTP methods to perform operations, typically exchanging JSON payloads.

FAQ: How does REST compare to GraphQL?

REST emphasizes multiple endpoints and resource-based modeling, while GraphQL provides a single endpoint that lets clients request precisely the fields they need. Choose based on data-fetching patterns, caching needs, and client complexity.

FAQ: What authentication methods are appropriate for REST APIs?

Common methods include OAuth 2.0 for delegated access, JWTs for stateless token-based auth, and API keys for service-to-service calls. Use short-lived tokens and secure storage practices to reduce exposure.

FAQ: How should I version my API?

Versioning strategies include URI versioning (/v1/resource), header-based negotiation, or semantic compatibility practices. Aim to minimize breaking changes and provide migration guides for clients.

FAQ: What are practical ways to test a REST API?

Combine unit tests, integration tests, contract tests (e.g., using OpenAPI), and end-to-end tests. Include load and chaos testing to validate behavior under stress and partial failures.

FAQ: How can I make my REST API more resilient?

Implement retries with exponential backoff, set sensible timeouts, use circuit breakers, and degrade gracefully. Observability (tracing and metrics) is essential to detect and respond to issues quickly.

Disclaimer

This article is for educational purposes and technical guidance only. It does not constitute investment advice, recommendations, or endorsements. Evaluate tools and services independently, and follow organizational security and compliance policies when designing and deploying APIs.

Research

REST API Explained: Design, Use Cases & Best Practices

Token Metrics Team
5
MIN

REST APIs are the backbone of modern web and mobile integrations. This guide breaks down core concepts, practical design patterns, and operational practices so engineers and product teams can evaluate, build, and maintain resilient RESTful services.

What is a REST API and why it matters

Representational State Transfer (REST) is an architectural style for distributed systems. A REST API exposes resources—typically represented as JSON or XML—over HTTP using standard verbs such as GET, POST, PUT, PATCH, and DELETE. The simplicity and ubiquity of REST make it a go-to choice for connecting microservices, mobile apps, and third-party integrations.

When assessing a REST API, focus on clarity of resource modeling, consistency of endpoints, and predictable use of HTTP semantics. Well-designed REST APIs reduce onboarding friction, simplify client code, and enable easier testing and monitoring across a heterogeneous environment.

Core principles and design patterns

Apply a few core principles to make a REST API robust and maintainable:

  • Resource-first design: Model nouns (users, orders, transactions) as resources with clear URIs, e.g., /api/v1/users/{id}.
  • Statelessness: Each request should contain all information needed to process it. This simplifies load balancing and scaling.
  • HTTP semantics: Use status codes (200, 201, 204, 400, 401, 404, 429, 500) appropriately and document their meaning for each endpoint.
  • Versioning: Prefer explicit versioning (/v1/) or content negotiation to avoid breaking clients when you evolve APIs.
  • Pagination and filtering: For list endpoints, implement cursor-based pagination and consistent filtering/query parameters to keep payloads bounded.

Pattern-based approaches—such as HATEOAS (hypermedia links), idempotent write operations, and resource representations optimized for client needs—help balance flexibility with performance. Choose patterns that align with your ecosystem and developer experience goals.

Authentication, rate limiting, and error handling

Security and reliability are non-negotiable. Common authentication options include API keys, OAuth 2.0 bearer tokens, and mutual TLS for service-to-service communication. For public APIs, use scopes and granular permissions.

Rate limiting and throttling protect backend systems from spikes and can be implemented at API gateway or service mesh layers. Communicate limits via headers (e.g., X-RateLimit-Remaining) and return 429 responses with retry guidance.

Error handling should be consistent and machine-readable. A common pattern is a top-level error object with code, message, and optionally a trace or documentation URL. For example:

  1. Return 4xx for client errors with actionable messages.
  2. Return 5xx for server-side failures and include correlation IDs for debugging.
  3. Document idempotency behavior for POST/PUT when retries are possible.

Practical use cases and integration patterns

REST APIs are used across many scenarios. Typical patterns include:

  • Backend-for-frontend (BFF): A thin API tailored to a specific client type (web, mobile) to aggregate multiple services.
  • Service composition: Use REST endpoints to compose business flows across microservices with clear contracts and fallbacks.
  • Event-driven hybrid: Combine REST for synchronous queries and webhooks or message queues for asynchronous events.

When integrating third-party REST APIs, perform a compatibility audit: authentication model, rate limits, data formats, error semantics, and SLA expectations. Automated contract tests (e.g., Pact) and API specifications (OpenAPI/Swagger) reduce integration risk and speed up CI/CD pipelines.

Testing, monitoring, and observability

Operational maturity for REST APIs comes from layered testing and observability:

  • Contract and regression tests: Use OpenAPI to generate tests and validate responses against schemas.
  • Load and chaos testing: Validate behavior under realistic and degraded conditions, including simulated rate-limit breaches and latency spikes.
  • Tracing and metrics: Instrument endpoints with request latency, error rates, and throughput. Distributed tracing helps correlate calls across services.

Expose health checks (liveness, readiness) and use alerting thresholds anchored to business metrics (e.g., error budget, p95 latency). Observability data enables root-cause analysis and informs capacity planning.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is REST and how does it differ from other styles?

REST is an architectural style emphasizing resources exposed over HTTP with stateless interactions and use of standard verbs. It differs from RPC (remote procedure call) in its resource orientation and from GraphQL in its single-endpoint query flexibility versus REST's multiple resource-oriented endpoints.

How should I version a REST API?

Common strategies include URI versioning (/v1/) and header-based versioning. URI versioning is explicit and simpler for clients; header-based supports smoother evolution. Choose a strategy early and document migration steps.

What are best practices for securing REST APIs?

Use TLS, enforce authentication/authorization, rotate credentials, implement least privilege, validate inputs to prevent injection, and rate-limit to mitigate abuse. For machine-to-machine traffic, consider mTLS or OAuth 2.0 client credentials flow.

How do I monitor and troubleshoot APIs in production?

Collect metrics (latency, error rates), logs, and traces. Correlate these with business KPIs and use correlation IDs to trace individual requests. Automated synthetic monitoring can detect endpoint regressions before users are impacted.

When should I choose REST vs GraphQL or gRPC?

Choose REST for simplicity, widespread tooling, and resource-centric models. GraphQL fits use cases where clients need flexible queries and reduced round-trips. gRPC excels at low-latency service-to-service calls with strict typing. Evaluate client needs, network constraints, and ecosystem tooling.

Can AI-driven tooling improve API development and research?

AI tools can accelerate schema design, generate client SDKs, detect anomalous traffic patterns, and prioritize technical debt. Platforms that combine market and on-chain data with API access can help teams prototype integrations and analyze usage patterns—explore platforms like Token Metrics for AI-driven insights relevant to crypto data APIs.

Disclaimer

This article is for educational purposes only. It explains technical concepts related to REST APIs and operational best practices. It does not provide investment advice, recommendations, or endorsements. Evaluate tools and architectural choices independently based on your requirements and constraints.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products