Crypto Basics

What are NFTs? NFT Art Explained | Future of NFTs

Learn more about NFTs and their future.
Token Metrics Team
6 minutes
MIN

You may have heard of CryptoPunks, Bored Ape Yacht Club, and VeeFriends, but you may not understand what they are. These names may sound like random combinations of words, but they actually represent some of the most valuable non-fungible token (NFT) projects that have emerged in the past few years.

The world of crypto art and NFTs may appear complex and mysterious, with a mix of celebrities, influencers, and internet experts. But it's not as confusing as it seems. Let's start from the beginning.

What Is An NFT?

Nearly all crypto art that has been introduced to the market has been done so through the minting of non-fungible tokens (NFTs). NFTs are digital assets that have verified proof of ownership. While "fungible tokens" like the US dollar can be easily traded (like exchanging 4 quarters for a dollar), each NFT is unique and cannot be easily traded. For example, imagine a sketch of "Starry Night" by Vincent Van Gogh that has been authenticated by a fine art appraiser as an original. This sketch would be non-fungible because you could not easily exchange it for, say, an original sketch by Leonardo da Vinci. This concept is easy to understand with tangible items like art pieces or collectible cards, but when digital assets can range from a celebrity tweet to an iconic meme to a picture of a pimped out animated ape, it may be confusing.

How Can We Ensure Unique Authenticity?

This is where NFTs enter the scene. Say you are a graphic design artist who just finished your newest 1-of-1 piece of work and you want to sell it as an NFT. Whoever purchases this piece would not only receive the artwork but they would also receive a “digital receipt” that proves that this exact piece is original, unique and authentic.

“But What If I Just Screenshot This Digital Artwork? Wouldn’t I Technically Own the Piece as Well?”

This is the first question that many have mockingly asked on social media and internet forums. The easy answer: yes, you can screenshot practically all digital artwork, but no, that does not mean you own it.

For example, millions of people swarm into the Louvre every year, waiting patiently amidst a giddy crowd, just to capture a picture of the priceless Mona Lisa. Obviously, a picture of the Mona Lisa saved on your iPhone camera roll does not mean that you own that painting.

NFTs work the same way.

Just as the Louvre paid millions of dollars to own, maintain, and display the Mona Lisa in their museum, NFT buyers do the same. However, the main difference is that instead of paying dollars to house the art in a fancy museum, they are paying with cryptocurrency and housing their art in a virtual showcase, so to speak.

This is the basis for how NFTs, cryptocurrency, and blockchain technology are establishing a new and lucrative market for digital art and artists.

The Art of Being Digital

In a 2021 interview, Gary Vaynerchuk (founder of Vayner Media and creator of VeeFriends) made the following statement regarding NFTs. The interviewer remarks on the tangibility of NFTs stating, "the digital aspect, like, you can't see it" — Gary jumps in:

"Well, you can't see a blue check on Instagram? I don't walk around the world with a blue check tattooed on my forehead, but everybody sees it. You can't see my 9 million followers on Instagram, or can you? I would argue the reverse. I would argue that people can't see most of the fancy things you have in your house; that people can see more digital than real life."

And he's onto something, and I'd like to call that something "The Art of Being Digital". In our highly digitized world, our online outreach and interconnectivity is wildly amplified. Gary Vee currently has 9.9 million followers on Instagram — but without access to the internet — he has no way of interacting with that community and tapping into the true power of those 9.9 million people.

Why Do NFTs Have Value?

The value of an NFT is determined by the collective intentionality of those who are willing to buy and sell them. In other words, the value of an NFT is based on what people are willing to pay for it. This is similar to the way that the value of traditional art is determined by the market, with the value being based on factors such as the artist's fame and the rarity of the work.

The Tom Brady example illustrates this idea. On the surface, it might seem strange that someone would pay $430k for a digital picture of a cartoon ape. However, if we consider the fact that the buyer was Tom Brady and the seller was the well-known digital artist Trevor Jones, it becomes clearer that the value of the NFT was determined by the collective intentionality of those involved in the transaction.

Furthermore, the digital art of NFTs offers more than just a digital file and a high price tag. NFTs provide the ability for digital artists to monetize their work and for collectors to own and trade unique digital items. This opens up new opportunities for artists and collectors alike, and has led to the growth of a vibrant and exciting market for NFTs.

Join The Club

Celebrities such as Tom Brady, Post Malone, Steph Curry, and Jimmy Fallon have been buying Bored Ape NFTs. Bored Ape NFTs were introduced by the Bored Ape Yacht Club (BAYC) in April 2021 at a price of 0.08 Ethereum (ETH) each, or about $190 at the time. Since then, the price of Bored Apes has increased significantly, yielding substantial returns for early investors.

In addition to the potential for financial gain, buying a Bored Ape NFT also grants the buyer access to the BAYC community. This includes access to the BAYC Discord, where buyers can connect with other members of the club, including celebrities, and collaborate on NFT-related projects. BAYC also gives members priority access to future NFT drops, allowing them to expand their collections.

Minting and selling NFTs can also be highly lucrative for those who create their own NFT projects. This is another reason why celebrities and others may be interested in the NFT market. Creating and selling NFTs allows artists and other creators to monetize their digital work and gives collectors the opportunity to own unique digital items. The growth of the NFT market has created new opportunities for both artists and collectors, leading to a vibrant and exciting market for NFTs.

Blockchain, Smart Contracts, and Secondary Sales

Blockchain technology is used to record the conversion of traditional currency into cryptocurrency, such as Ethereum (ETH), in the NFT market. This transaction is recorded on the blockchain as public information that is easily accessible to anyone who wants to view it. This ensures transparency and helps to prevent fraud in the NFT market.

Smart contracts are programs stored on the blockchain that allow NFT creators to stipulate the conditions of resale. For example, a creator could draft a smart contract that allows them to earn a 10% commission on any subsequent resales of their NFT. This allows creators to continue to benefit from the success of their work, even after the initial sale.

Smart contracts also facilitate secondary sales in the NFT market. When the value of an NFT increases, the smart contract associated with that NFT can automatically distribute any profits from the sale to the relevant parties, such as the creator or the NFT platform. For example, if the value of Tom Brady's Bored Ape NFT increased from $430k to $530k, the smart contract could automatically distribute the $100k profit to the Bored Ape Yacht Club, if that was stipulated in the contract.

This use of smart contracts helps to ensure that all parties are fairly compensated for their contributions to the NFT market, and it allows for efficient and transparent transactions without the need for intermediaries.

The Future Of Crypto-Art

Grammy-winning artist Tyler, the Creator recently questioned the value of NFTs, stating that most of the examples he has seen are not "beautiful art." While art is subjective and many NFTs are AI-generated, there are still many ways in which NFTs can offer value in the real world.

First, NFTs can be used to represent tangible experiences and achievements. Instead of framing a concert ticket or a season pass, these items could be represented as NFTs, allowing individuals to proudly display their experiences and achievements in the digital world. This could be especially beneficial for VIP experiences and exclusive memberships.

Second, NFTs can provide a level of authenticity and scarcity that cannot be achieved with physical items. This is especially useful for limited edition items and collectibles, which can be authenticated and traded easily on the blockchain.

Third, the use of smart contracts can ensure that all parties are fairly compensated for their contributions to the NFT market. This allows for transparent and efficient transactions without the need for intermediaries.

Overall, while some may dismiss NFTs as "silly little digital artworks," they have the potential to reshape not just the art world, but the world itself.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

FastAPI: Build High-Performance Python APIs

Token Metrics Team
4
MIN

FastAPI has become a go-to framework for teams that need production-ready, high-performance APIs in Python. It combines modern Python features, automatic type validation via pydantic, and ASGI-based async support to deliver low-latency endpoints. This post breaks down pragmatic patterns for building, testing, and scaling FastAPI services, with concrete guidance on performance tuning, deployment choices, and observability so you can design robust APIs for real-world workloads.

Overview: Why FastAPI and where it fits

FastAPI is an ASGI framework that emphasizes developer experience and runtime speed. It generates OpenAPI docs automatically, enforces request/response typing, and integrates cleanly with async workflows. Compare FastAPI to traditional WSGI stacks (Flask, Django sync endpoints): FastAPI excels when concurrency and I/O-bound tasks dominate, and when you want built-in validation and schema-driven design.

Use-case scenarios where FastAPI shines:

  • Low-latency microservices handling concurrent I/O (databases, HTTP calls, queues).
  • AI/ML inference endpoints that require fast request routing and input validation.
  • Public APIs where OpenAPI/Swagger documentation and typed schemas reduce integration friction.

Async patterns and performance considerations

FastAPI leverages async/await to let a single worker handle many concurrent requests when operations are I/O-bound. Key principles:

  1. Avoid blocking calls inside async endpoints. Use async database drivers (e.g., asyncpg, databases) or wrap blocking operations in threadpools when necessary.
  2. Choose the right server. uvicorn (with or without Gunicorn) is common: uvicorn for development and Gunicorn+uvicorn workers for production. Consider Hypercorn for HTTP/2 or advanced ASGI features.
  3. Benchmark realistic scenarios. Use tools like wrk, k6, or hey to simulate traffic patterns similar to production. Measure p95/p99 latency, not just average response time.

Performance tuning checklist:

  • Enable HTTP keep-alive and proper worker counts (CPU cores Ă— factor depending on blocking).
  • Cache expensive results (Redis, in-memory caches) and use conditional responses to reduce payloads.
  • Use streaming responses for large payloads to minimize memory spikes.

Design patterns: validation, dependency injection, and background tasks

FastAPI's dependency injection and pydantic models enable clear separation of concerns. Recommended practices:

  • Model-driven APIs: Define request and response schemas with pydantic. This enforces consistent validation and enables automatic docs.
  • Modular dependencies: Use dependency injection for DB sessions, auth, and feature flags to keep endpoints thin and testable.
  • Background processing: Use FastAPI BackgroundTasks or an external queue (Celery, RQ, or asyncio-based workers) for long-running jobs—avoid blocking the request lifecycle.

Scenario analysis: for CPU-bound workloads (e.g., heavy data processing), prefer external workers or serverless functions. For high-concurrency I/O-bound workloads, carefully tuned async endpoints perform best.

Deployment, scaling, and operational concerns

Deploying FastAPI requires choices around containers, orchestration, and observability:

  • Containerization: Create minimal Docker images (slim Python base, multi-stage builds) and expose an ASGI server like uvicorn with optimized worker settings.
  • Scaling: Horizontal scaling with Kubernetes or ECS works well. Use readiness/liveness probes and autoscaling based on p95 latency or CPU/memory metrics.
  • Security & rate limiting: Implement authentication at the edge (API gateway) and enforce rate limits (Redis-backed) to protect services. Validate inputs strictly with pydantic to avoid malformed requests.
  • Observability: Instrument metrics (Prometheus), distributed tracing (OpenTelemetry), and structured logs to diagnose latency spikes and error patterns.

CI/CD tips: include a test matrix for schema validation, contract tests against OpenAPI, and canary deploys for backward-incompatible changes.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is FastAPI and how is it different?

FastAPI is a modern, ASGI-based Python framework focused on speed and developer productivity. It differs from traditional frameworks by using type hints for validation, supporting async endpoints natively, and automatically generating OpenAPI documentation.

FAQ: When should I use async endpoints versus sync?

Prefer async endpoints for I/O-bound operations like network calls or async DB drivers. If your code is CPU-bound, spawning background workers or using synchronous workers with more processes may be better to avoid blocking the event loop.

FAQ: How many workers or instances should I run?

There is no one-size-fits-all. Start with CPU core count as a baseline and adjust based on latency and throughput measurements. For async I/O-bound workloads, fewer workers with higher concurrency can be more efficient; for blocking workloads, increase worker count or externalize tasks.

FAQ: What are key security practices for FastAPI?

Enforce strong input validation with pydantic, use HTTPS, validate and sanitize user data, implement authentication and authorization (OAuth2, JWT), and apply rate limiting and request size limits at the gateway.

FAQ: How do I test FastAPI apps effectively?

Use TestClient from FastAPI for unit and integration tests, mock external dependencies, write contract tests against OpenAPI schemas, and include load tests in CI to catch performance regressions early.

Disclaimer

This article is for educational purposes only. It provides technical and operational guidance for building APIs with FastAPI and does not constitute professional or financial advice.

Research

Practical API Testing: Strategies, Tools, and Best Practices

Token Metrics Team
5
MIN

APIs are the connective tissue of modern software. Testing them thoroughly prevents regressions, ensures predictable behavior, and protects downstream systems. This guide breaks API testing into practical steps, frameworks, and tool recommendations so engineers can build resilient interfaces and integrate them into automated delivery pipelines.

What is API testing?

API testing verifies that application programming interfaces behave according to specification: returning correct data, enforcing authentication and authorization, handling errors, and performing within expected limits. Unlike UI testing, API tests focus on business logic, data contracts, and integration between systems rather than presentation. Well-designed API tests are fast, deterministic, and suitable for automation, enabling rapid feedback in development workflows.

Types of API tests

  • Unit/Component tests: Validate single functions or routes in isolation, often by mocking external dependencies to exercise specific logic.
  • Integration tests: Exercise interactions between services, databases, and third-party APIs to verify end-to-end flows and data consistency.
  • Contract tests: Assert that a provider and consumer agree on request/response shapes and semantics, reducing breaking changes in distributed systems.
  • Performance tests: Measure latency, throughput, and resource usage under expected and peak loads to find bottlenecks.
  • Security tests: Check authentication, authorization, input validation, and common vulnerabilities (for example injection, broken access control, or insufficient rate limiting).
  • End-to-end API tests: Chain multiple API calls to validate workflows that represent real user scenarios across systems.

Designing an API testing strategy

Effective strategies balance scope, speed, and confidence. A common model is the testing pyramid: many fast unit tests, a moderate number of integration and contract tests, and fewer end-to-end or performance tests. Core elements of a robust strategy include:

  • Define clear acceptance criteria: Use API specifications (OpenAPI/Swagger) to derive expected responses, status codes, and error formats so tests reflect agreed behavior.
  • Prioritize test cases: Focus on critical endpoints, authentication flows, data integrity, and boundary conditions that pose the greatest risk.
  • Use contract testing: Make provider/consumer compatibility explicit with frameworks that can generate or verify contracts automatically.
  • Maintain test data: Seed environments with deterministic datasets, use fixtures and factories, and isolate test suites from production data.
  • Measure coverage pragmatically: Track which endpoints and input spaces are exercised, but avoid chasing 100% coverage if it creates brittle tests.

Tools, automation, and CI/CD

Tooling choices depend on protocols (REST, GraphQL, gRPC) and language ecosystems. Common tools and patterns include:

  • Postman & Newman: Rapid exploratory testing, collection sharing, and collection-based automation suited to cross-team collaboration.
  • REST-assured / Supertest / pytest + requests: Language-native libraries for integration and unit testing in JVM, Node.js, and Python ecosystems.
  • Contract testing tools: Pact, Schemathesis, or other consumer-driven contract frameworks to prevent breaking changes in services.
  • Load and performance: JMeter, k6, Gatling for simulating traffic and measuring resource limits and latency under stress.
  • Security scanners: OWASP ZAP or dedicated fuzzers for input validation, authentication, and common attack surfaces.

Automation should be baked into CI/CD pipelines: run unit and contract tests on pull requests, integration tests on feature branches or merged branches, and schedule performance/security suites on staging environments. Observability during test runs—collecting metrics, logs, and traces—helps diagnose flakiness and resource contention faster.

AI-driven analysis can accelerate test coverage and anomaly detection by suggesting high-value test cases and highlighting unusual response patterns. For teams that integrate external data feeds into their systems, services that expose robust, real-time APIs and analytics can be incorporated into test scenarios to validate third-party integrations under realistic conditions. For example, Token Metrics offers datasets and signals that can be used to simulate realistic inputs or verify integrations with external data providers.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is the difference between unit and integration API tests?

Unit tests isolate individual functions or routes using mocks and focus on internal logic. Integration tests exercise multiple components together (for example service + database) to validate interaction, data flow, and external dependencies.

How often should I run performance tests?

Run lightweight load tests during releases and schedule comprehensive performance runs on staging before major releases or after architecture changes. Frequency depends on traffic patterns and how often critical paths change.

Can AI help with API testing?

AI can suggest test inputs, prioritize test cases by risk, detect anomalies in responses, and assist with test maintenance through pattern recognition. Treat AI as a productivity augmenter that surfaces hypotheses requiring engineering validation.

What is contract testing and why use it?

Contract testing ensures providers and consumers agree on the API contract (schemas, status codes, semantics). It reduces integration regressions by failing early when expectations diverge, enabling safer deployments in distributed systems.

What are best practices for test data management?

Use deterministic fixtures, isolate test databases, anonymize production data when necessary, seed environments consistently, and prefer schema or contract assertions to validate payload correctness rather than brittle value expectations.

How do I handle flaky API tests?

Investigate root causes such as timing, external dependencies, or resource contention. Reduce flakiness by mocking unstable third parties, improving environment stability, adding idempotent retries where appropriate, and capturing diagnostic traces during failures.

Disclaimer

This article is educational and technical in nature and does not constitute investment, legal, or regulatory advice. Evaluate tools and data sources independently and test in controlled environments before production use.

Research

Understanding APIs: A Clear Definition

Token Metrics Team
5
MIN

APIs power modern software by letting systems communicate without exposing internal details. Whether you're building an AI agent, integrating price feeds for analytics, or connecting wallets, understanding the core concept of an "API" — and the practical rules around using one — is essential. This article defines what an API is, explains common types, highlights evaluation criteria, and outlines best practices for secure, maintainable integrations.

What an API Means: A Practical Definition

API stands for Application Programming Interface. At its simplest, an API is a contract: a set of rules that lets one software component request data or services from another. The contract specifies available endpoints (or methods), required inputs, expected outputs, authentication requirements, and error semantics. APIs abstract implementation details so consumers can depend on a stable surface rather than internal code.

Think of an API as a menu in a restaurant: the menu lists dishes (endpoints), describes ingredients (parameters), and sets expectations for what arrives at the table (responses). Consumers don’t need to know how the kitchen prepares the dishes — only how to place an order.

Common API Styles and When They Fit

APIs come in several architectural styles. The three most common today are:

  • REST (Representational State Transfer): Resources are exposed via HTTP verbs (GET, POST, PUT, DELETE). REST APIs are simple, cacheable, and easy to test with standard web tooling.
  • GraphQL: A query language that lets clients request exactly the fields they need. GraphQL reduces over- and under-fetching but introduces complexity on server-side resolvers and query depth control.
  • RPC / WebSocket / gRPC: Remote Procedure Calls or streaming protocols suit high-performance or real-time needs. gRPC uses binary protocols for efficiency; WebSockets enable persistent bidirectional streams, useful for live updates.

Choosing a style depends on use case: REST for simple, cacheable resources; GraphQL for complex client-driven queries; gRPC/WebSocket for low-latency or streaming scenarios.

How to Read and Evaluate API Documentation

Documentation quality often determines integration time and reliability. When evaluating an API, check for:

  • Clear endpoint descriptions: Inputs, outputs, HTTP methods, and expected status codes.
  • Auth & rate-limit details: Supported authentication methods (API keys, OAuth), token lifecycle, and precise rate-limit rules.
  • Example requests & responses: Copy‑paste examples in multiple languages make testing faster.
  • SDKs and client libraries: Maintained SDKs reduce boilerplate and potential bugs.
  • Changelog & versioning policy: How breaking changes are communicated and how long old versions are supported.

For crypto and market data APIs, also verify the latency SLAs, the freshness of on‑chain reads, and whether historical data is available in a form suitable for research or model training.

Security, Rate Limits, and Versioning Best Practices

APIs expose surface area; securing that surface is critical. Key practices include:

  • Least-privilege keys: Issue scoped API keys or tokens that only grant necessary permissions.
  • Use TLS: Always request and enforce encrypted transport (HTTPS) to protect credentials and payloads.
  • Rate limit handling: Respect limit headers and implement retry/backoff logic to avoid throttling or IP bans.
  • Versioning: Prefer URL or header-based versioning and design migrations so clients can opt-in to changes.
  • Monitoring: Track error rates, latency, and unusual patterns that could indicate abuse or regressions.

Security and resilience are especially important in finance and crypto environments where integrity and availability directly affect analytics and automated systems.

APIs in AI and Crypto Workflows: Practical Steps

APIs are central to AI-driven research and crypto tooling. When integrating APIs into data pipelines or agent workflows, consider these steps:

  1. Map required data: determine fields, frequency, and freshness needs.
  2. Prototype with free or sandbox keys to validate endpoints and error handling.
  3. Instrument observability: log request IDs, latencies, and response codes to analyze performance.
  4. Design caching layers for non-sensitive data to reduce costs and improve latency.
  5. Establish rotation and revocation processes for keys to maintain security hygiene.

AI models and agents can benefit from structured, versioned APIs that provide deterministic responses; integrating dataset provenance and schema validation improves repeatability in experiments.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

Frequently Asked Questions

What is the simplest way to describe an API?

An API is an interface that defines how two software systems communicate. It lists available operations, required inputs, and expected outputs so developers can use services without understanding internal implementations.

How do REST and GraphQL differ?

REST exposes fixed resource endpoints and relies on HTTP semantics. GraphQL exposes a flexible query language letting clients fetch precise fields in one request. REST favors caching and simplicity; GraphQL favors efficiency for complex client queries.

What should I check before using a crypto data API?

Confirm data freshness, historical coverage, authentication methods, rate limits, and the provider’s documentation. Also verify uptime, SLA terms if relevant, and whether the API provides proof or verifiable on‑chain reads for critical use cases.

How do rate limits typically work?

Rate limits set a maximum number of requests per time window, often per API key or IP. Providers may return headers indicating remaining quota and reset time; implement exponential backoff and caching to stay within limits.

Can AI tools help evaluate APIs?

AI-driven research tools can summarize documentation, detect breaking changes, and suggest integration patterns. For provider-specific signals and token research, platforms like Token Metrics combine multiple data sources and models to support analysis workflows.

Disclaimer

This article is educational and informational only. It does not constitute financial, legal, or investment advice. Readers should perform independent research and consult qualified professionals before making decisions related to finances, trading, or technical integrations.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products