Research

What Are The Risks of AI Controlling DAOs? Critical Risks Every Crypto Investor Must Know

Explore the potential risks of AI managing DAOs and understand the implications for governance and decision-making. Read more to stay informed.
Talha Ahmad
5 min
MIN

The convergence of artificial intelligence and decentralized autonomous organizations (DAOs) marks a groundbreaking moment in blockchain technology. This fusion promises to revolutionize governance by automating decision making and enhancing efficiency through AI-driven systems. However, while integrating AI technologies into DAOs offers exciting opportunities, it also introduces a complex array of risks that could fundamentally undermine the democratic ideals upon which decentralized autonomous organizations were founded. Understanding what are the risks of AI controlling DAOs is essential for anyone involved in decentralized finance, governance, or the broader crypto ecosystem.

Introduction to AI-Controlled DAOs: Definition and Overview

AI-Controlled DAOs are decentralized autonomous organizations that leverage artificial intelligence to manage and govern their operations with minimal human intervention. By integrating advanced AI models and algorithms into the core of DAO governance, these entities can autonomously execute decision making processes, optimize asset management, and adapt to changing environments in real time. Artificial intelligence AI enables DAOs to analyze complex data sets, identify patterns, and make informed decisions without relying on centralized authorities or manual oversight. This fusion of AI and DAOs is reshaping the landscape of decentralized governance, offering the potential for more efficient, scalable, and self-sustaining organizations. As AI development continues to advance, the role of AI models in decentralized autonomous organizations is set to expand, fundamentally transforming how decisions are made and assets are managed across the crypto ecosystem.

The Rise of AI-Driven DAOs: A Double-Edged Innovation

AI-driven DAOs represent a new paradigm in the DAO space, where artificial intelligence tools and advanced AI models are entrusted with governance responsibilities traditionally held by human token holders. These AI agents can propose changes, vote on governance issues, and even execute decisions autonomously via smart contracts. This shift from human-centric governance to algorithm-driven decision making promises increased scalability and productivity, potentially unlocking new revenue streams and optimizing asset management.

However, this evolution also introduces unique challenges. The autonomous nature of AI acting within DAOs raises critical questions about ethical concerns, security vulnerabilities, and the balance of power between AI systems and human intervention. Unlike traditional DAOs, where risks often stem from voter apathy or central authority influence, AI DAOs face the threat of model misalignment—where AI algorithms optimize for objectives that deviate from human intentions. This misalignment is not merely theoretical; it is a practical issue that can disrupt consensus mechanisms and jeopardize the strategic direction of decentralized autonomous organizations.

In essence, while AI technologies can propel DAOs into a new era of efficiency and data-driven insights, they also potentially lead to scenarios where AI systems act in ways that conflict with the foundational principles of decentralization and democratic governance, potentially leading to significant risks or harm if not properly managed.

But what if AI ownership within DAOs shifts the balance of power entirely, allowing autonomous agents to make decisions without meaningful human oversight? But what happens when collective intelligence is governed by algorithms rather than people, and how might this reshape the future of decentralized organizations?

The Benefits of AI-Controlled DAOs: Promise and Potential

The integration of AI and DAOs brings a host of compelling benefits that are driving innovation in decentralized governance. AI-Controlled DAOs can automate decision making processes, enabling faster and more consistent responses to governance challenges. By harnessing the analytical power of AI daos, these organizations can process vast amounts of data, uncover actionable insights, and make data-driven decisions that enhance overall performance. This automation not only streamlines operations but also opens up new revenue streams and business models, as AI-driven DAOs can identify and capitalize on emerging opportunities more efficiently than traditional structures. Improved asset management is another key advantage, with AI systems optimizing resource allocation and risk management. Ultimately, the synergy between AI and DAOs empowers organizations to become more resilient, adaptive, and innovative, paving the way for a new era of decentralized, autonomous governance.

Critical Risk Categories in AI-Controlled DAOs

1. Model Misalignment and Goal Deviation

At the heart of AI risks in DAO governance lies the problem of model misalignment. AI systems, especially those powered by machine learning models and large language models, operate by optimizing specific metrics defined during training. Training AI models in isolated environments or silos can increase the risk of misalignment and loss of control, as these models may not be exposed to the diverse perspectives and values necessary for safe and ethical outcomes. However, these metrics might not capture the full spectrum of human values or community goals. As a result, an AI system could pursue strategies that technically fulfill its programmed objectives but harm the DAO’s long-term interests.

For example, an AI agent managing financial assets within a decentralized autonomous organization might prioritize maximizing short-term yield without considering the increased exposure to security risks or market volatility. The Freysa contest highlighted how malicious actors exploited an AI agent’s misunderstanding of its core function, tricking it into transferring $47,000. This incident underscores how AI models, if not properly aligned and monitored, can be manipulated or confused, leading to catastrophic outcomes.

2. Algorithmic Bias and Democratic Erosion

AI systems inherit biases from their training data and design, which can erode the democratic ethos of DAO governance. While DAO governance AI tools are designed to enhance proposal management and moderation, they can also inadvertently reinforce biases if not properly monitored. Biases embedded in AI algorithms may result in unfair decision making, favoring certain proposals, contributors, or viewpoints disproportionately. These biases manifest in several ways:

  • Selection Bias: AI models might consistently prioritize certain types of proposals or token holders, marginalizing others.
  • Historical Bias: Training data reflecting past inequalities can perpetuate systemic discrimination within DAO governance.
  • Confirmation Bias: AI-driven decision-making could reinforce existing organizational tendencies, stifling innovation and diverse perspectives.

Such biases threaten to undermine the promise of decentralized networks by creating invisible barriers to participation, effectively centralizing power despite the decentralized structure.

3. Security Vulnerabilities and Attack Vectors

Integrating AI into DAOs introduces new security risks that extend beyond traditional smart contract vulnerabilities. AI systems depend heavily on training data and algorithms, both of which can be targeted by malicious actors seeking to manipulate governance outcomes.

Key security concerns include:

  • Unauthorized Access and Model Tampering: Without robust access controls, attackers can alter AI model outputs, compromising trust in decision making. Improper or overly broad ai permission settings can allow attackers to exploit AI authority within DAOs, making it essential to enforce strict permission controls to limit unauthorized actions.
  • Data Poisoning: Corrupting training data can mislead AI systems, causing them to make flawed or harmful decisions.
  • Adversarial Attacks: Malicious inputs crafted specifically to deceive AI models can lead to unpredictable and damaging behavior.
  • Prompt Injection: Attackers can exploit AI assistants or natural language processing capabilities to inject deceptive instructions, as seen in the Freysa incident.
  • Model Extraction: Competitors or attackers may reverse-engineer proprietary AI algorithms, exposing intellectual property and governance strategies.

These vulnerabilities underscore the necessity for decentralized autonomous organizations to implement robust security protocols that safeguard both AI systems and the underlying smart contracts.

4. Centralization Through Technical Complexity

One of the most subtle yet profound risks of AI in DAOs is the potential for centralization of power among a small group of technical experts or "AI wizards." The complexity of AI development and maintenance creates a knowledge barrier that limits meaningful participation to those with specialized skills. This technical gatekeeping can result in governance control shifting from the broader community to a few individuals who understand and can manipulate AI systems.

Such centralization contradicts the decentralized ethos of DAOs and risks creating new oligarchies defined by AI expertise rather than token ownership or community contribution. Over time, this dynamic could erode trust and reduce the legitimacy of AI-driven DAO governance.

5. Regulatory and Compliance Nightmares

AI-controlled DAOs operate in a regulatory gray area, facing challenges that traditional organizations do not. The autonomous nature of AI acting within decentralized networks complicates accountability and legal responsibility. Key regulatory concerns include:

  • Accountability: When AI systems make autonomous decisions, determining liability for errors or malicious actions becomes complex.
  • Cross-Jurisdictional Compliance: DAOs operate globally, but AI governance regulations vary widely by jurisdiction, creating compliance challenges.
  • Evolving Standards: Rapid advances in AI development and shifting regulatory landscapes mean DAOs risk falling out of compliance as standards change.

These factors introduce legal uncertainties that could expose AI DAOs to sanctions, fines, or operational restrictions, complicating their long-term viability.

Real-World Manifestations of AI DAO Risks

The risks associated with AI-driven DAOs are not merely theoretical. In 2025 alone, smart contract security flaws led to over $90 million in losses due to hacks and exploits within DAO structures. When AI systems are layered onto these vulnerabilities, the potential for cascading failures grows exponentially.

Incidents have already demonstrated how attackers exploit governance mechanisms, manipulating voting and decision-making processes. AI’s speed and efficiency can be weaponized to identify arbitrage opportunities that disadvantage the DAO itself. Moreover, AI systems processing community input may be vulnerable to sophisticated social engineering and disinformation campaigns, further destabilizing governance. The use of ai agent comments in forum discussions and governance decisions can amplify manipulation by allowing AI to influence outcomes directly. There is also a risk that AI-powered moderation tools could inadvertently generate or spread hate speech, making it essential to implement safeguards to prevent toxic content. Additionally, the proliferation of ai generated content, such as misinformation or abusive material, poses dangers by misleading users and undermining the stability of governance.

These real-world examples highlight the urgent need for comprehensive risk management strategies in AI DAO integration.

The Data Quality Crisis

A frequently overlooked risk in AI-controlled DAOs is the quality and integrity of data used to train and operate AI models. Since AI systems rely heavily on training data, any flaws or manipulation in this data can compromise the entire governance process.

In decentralized autonomous organizations, this risk manifests through:

  • Incomplete Information: DAOs often lack extensive historical data, limiting the reliability of AI-driven predictions and decisions.
  • Gaming Risks: Members may intentionally manipulate input data to influence AI decision making for personal gain.
  • External Dependencies: Reliance on third-party data sources introduces vulnerabilities to external tampering or failures.

Ensuring the accuracy, completeness, and security of training data is therefore paramount to maintaining AI safety and trustworthy DAO governance.

Asset Management in AI-Controlled DAOs: New Frontiers, New Risks

Asset management is at the heart of many AI-Controlled DAOs, as these organizations are tasked with overseeing and optimizing a wide range of financial assets and digital resources. By deploying advanced AI models, including machine learning models and natural language processing tools, AI-Controlled DAOs can analyze market data, forecast trends, and make strategic investment decisions with unprecedented speed and accuracy. However, this reliance on AI systems introduces new security vulnerabilities and risks. Malicious actors may attempt to exploit weaknesses in AI algorithms, manipulate training data, or launch sophisticated attacks targeting the DAO’s asset management protocols. To address these challenges, AI-Controlled DAOs must implement robust security protocols, ensure the integrity and quality of their training data, and establish transparent governance structures that can respond to emerging threats. By proactively managing these risks, AI-Controlled DAOs can unlock new opportunities for growth while safeguarding their financial assets and maintaining trust within their communities.

Navigating the Risks: Lessons from Token Metrics

Despite these challenges, responsible integration of artificial intelligence in DAO governance is achievable. Platforms like Token Metrics exemplify how AI tools can enhance decision making without sacrificing transparency or human oversight.

Token Metrics is an AI-powered crypto analytics platform that leverages advanced AI models and predictive analytics to identify promising tokens and provide real-time buy and sell signals. By anticipating future trends through AI-driven predictions, Token Metrics helps DAOs and investors improve investment strategies and resource management. Some of the advanced AI models used by Token Metrics are based on large language model technology, which underpins content analysis and decision support for more effective DAO operations. Their approach balances AI-driven insights with human judgment, embodying best practices for AI and DAOs:

  • Transparency: The platform openly explains its AI recommendations, mitigating the black box problem common in AI systems.
  • Human-AI Collaboration: Rather than replacing humans, Token Metrics augments human analysis with AI-generated data-driven insights.
  • Risk Management: Multiple data sources and validation mechanisms reduce single points of failure and improve reliability.
  • Continuous Learning: Their AI models are regularly updated based on market feedback and user input to maintain alignment with investor goals.

With a track record of 8,000% returns from AI-selected crypto baskets, Token Metrics demonstrates that artificial intelligence tools, when implemented with robust safeguards and human oversight, can unlock new revenue streams and improve DAO productivity without compromising security or ethical standards.

AI Model Ownership: Legal and Technical Implications

As AI models become central to the operation of AI-Controlled DAOs, questions around ownership and intellectual property take on new significance. Determining who owns the rights to an AI model—whether it’s the developers, the DAO itself, or the broader community—can have far-reaching legal and technical implications. Issues of liability and accountability also arise, especially when AI-driven decisions lead to unintended consequences or disputes. To navigate these complexities, AI-Controlled DAOs need to establish clear policies regarding AI model ownership, including licensing agreements and governance frameworks that protect the interests of all stakeholders. Addressing these challenges is essential for ensuring transparency, safeguarding intellectual property, and fostering innovation in the rapidly evolving landscape of AI and decentralized autonomous organizations.

Mitigation Strategies and Best Practices

Although AI-controlled DAOs face significant risks, these challenges are not insurmountable. Proactive strategies can help organizations safely integrate AI technologies into their governance structures. It is especially important to establish clear rules and safeguards for scenarios where AI owns assets or treasuries within DAOs, as this fundamentally changes traditional notions of ownership and financial authority.

  • Implement robust access controls and multi-signature wallets to prevent unauthorized actions by AI agents.
  • Regularly audit smart contracts and AI code to identify and patch vulnerabilities before they can be exploited.
  • Use platforms like Ocean Protocol to enable decentralized data sharing and AI integration, which can enhance security, empower data owners, and automate governance processes.
  • Foster collaboration between DAOs, such as the Amazon rainforest DAO, where AI-powered metagovernance and swarm intelligence facilitate joint decision-making and address environmental challenges like deforestation and climate change.
  • Consider the environmental impact of AI deployment, particularly the significant energy consumption of data centers that power large-scale AI systems, and prioritize sustainable infrastructure to minimize harm.

1. Hybrid Governance Models

Combining AI automation with human oversight is critical. DAOs should reserve high-impact decisions for human token holders or expert councils, ensuring AI-driven decisions are subject to review and intervention when necessary. This hybrid approach preserves the benefits of AI while maintaining democratic participation.

2. Continuous Alignment Monitoring

Alignment between AI algorithms and community values must be an ongoing process. Regular audits and testing of AI decision-making against expected outcomes help detect and correct goal deviations early. Treating alignment as a continuous operational expense is essential for AI safety.

3. Distributed Technical Expertise

Investing in community education and skill-building democratizes AI stewardship. By broadening technical expertise among members, DAOs can prevent governance capture by a small group of AI experts and foster a more decentralized technical ecosystem.

4. Robust Security Frameworks

Implementing comprehensive security protocols is vital. Measures include:

  • Multi-signature requirements for AI-initiated transactions
  • Anomaly detection systems to flag unusual AI behavior
  • Regular security audits of both AI systems and smart contracts
  • Incident response plans tailored to AI-specific threats

These steps help safeguard DAO governance against malicious AI and external attacks.

The Path Forward: Balancing Innovation and Risk

The future of AI-controlled DAOs hinges on striking the right balance between leveraging AI’s capabilities and preserving meaningful human intervention. As AI development and decentralized networks continue to evolve, more sophisticated governance models will emerge that integrate AI-driven decision making with community oversight.

Organizations exploring AI in DAO governance should:

  1. Start with limited AI roles in non-critical functions to minimize risk.
  2. Maintain transparency about AI system operations to build trust.
  3. Preserve mechanisms for human override to ensure control remains with the community.
  4. Conduct regular audits to monitor AI performance and compliance.
  5. Educate members about AI risks and benefits to foster informed participation.

By adopting these practices, DAOs can harness the advantages of artificial intelligence while mitigating its inherent risks.

Conclusion: Preparing for an AI-Governed Future

Integrating artificial intelligence into decentralized autonomous organizations offers transformative potential but also brings significant challenges. While AI can enhance efficiency, reduce certain human biases, and enable more responsive governance, it simultaneously introduces new security risks, ethical concerns, and governance complexities that could threaten the democratic foundations of DAOs.

Success in this evolving landscape depends on thoughtful AI development, robust risk management, and transparent human-AI collaboration. Platforms like Token Metrics illustrate how AI products can deliver powerful, data-driven insights and automation while maintaining accountability and community trust.

As we stand at this technological crossroads, understanding what are the risks of AI controlling DAOs is essential. By acknowledging these risks and implementing appropriate safeguards, the crypto community can work towards a future where AI enhances rather than replaces human agency in decentralized governance—preserving the revolutionary promise of decentralized autonomous organizations.

For investors and participants in the crypto ecosystem, staying informed about these emerging technologies and choosing platforms with proven responsible AI implementation will be crucial for navigating the complex and rapidly evolving DAO space.

‍

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

How to Find the Next 100x Cryptocurrency Before Everyone Else | Token Metrics Moonshots

Token Metrics Team
8 min
MIN

In the world of crypto, timing is everything. If you’re trying to turn $100 into $10,000, the holy grail is finding the next 100x altcoin before the masses catch on. These explosive opportunities are rare, but with the right tools and strategy, they’re not impossible to uncover.

In this guide, we’ll show you exactly how to identify moonshot tokens—those under-the-radar gems that have the potential to skyrocket. You’ll also learn how to use Token Metrics, one of the most powerful AI-driven platforms, to spot them before they take off.

What Are Moonshot Cryptocurrencies?

“Moonshot” is a crypto-native term that refers to a low-cap cryptocurrency with the potential to deliver outsized returns, often 10x, 50x, or even 100x. These tokens may start unnoticed, trading at fractions of a penny, but once they gain traction, they can make early adopters massive profits in a very short period of time.

Key Traits of Moonshots:

  • Market cap under $50 million
  • High volatility with strong upward price potential
  • Community-driven marketing or narrative
  • Emerging sectors like AI, DePIN, Web3 infrastructure, or meme coins
  • Limited exchange listings (often only on DEXs)

Moonshots are risky—but with smart research and analytics, they can be strategic bets rather than blind gambles.

How Moonshots Work

Most 100x altcoins follow a predictable life cycle:

  1. Early Accumulation – Whales and savvy investors quietly accumulate before the public is aware.
  2. Trigger Catalyst – A social media trend, influencer mention, exchange listing, or big partnership sparks interest.
  3. Volume Surge – Trading activity spikes, liquidity increases, and price begins to move.
  4. Parabolic Rally – The token “moons” as retail investors jump in.
  5. Top Formation and Correction – Early investors take profits; latecomers often buy the top.

Catching a moonshot before Step 3 is your goal. You want to be in position before the breakout, not chasing after it.

This is where Token Metrics becomes invaluable.

Why Token Metrics Is the Best Tool for Discovering Moonshots

Token Metrics is a crypto analytics platform powered by AI, machine learning, and real-time data. It monitors thousands of tokens and ranks them using quantitative models, helping traders and investors find opportunities before they trend.

With features like:

  • Trader Grade and Investor Grade rankings
  • AI-generated signals
  • Real-time ROI tracking
  • Integrated trading functionality


Token Metrics helps you act fast and stay ahead of the crowd.

Let’s walk through exactly how to use Token Metrics to find the next 100x cryptocurrency.

How to Use Token Metrics to Find Moonshots

Here’s a step-by-step guide to using Token Metrics’ Moonshot system to uncover high-potential altcoins.

✅ Step 1: Go to the Ratings Page

Once logged into the Token Metrics platform:

  • Navigate to the “Ratings” tab from the main dashboard.
  • This section ranks thousands of cryptocurrencies based on AI-calculated Trader Grade and Investor Grade.

Trader Grade is especially important for short-term breakout potential—it reflects the strength of a token’s momentum and technical setup.

✅ Step 2: Click on the “Moonshots” Tab

In the Ratings interface:

  • Click the “Moonshots” tab at the top.
  • This filters the token list to show only those identified as moonshot candidates by Token Metrics’ AI models.

These tokens are selected using proprietary algorithms that scan for:

  • Sudden volume surges
  • Rising trader grades
  • Favorable technical and social signals
  • Market cap anomalies

These are the coins flying just below the radar—with massive breakout potential.

✅ Step 3: Review Key Metrics

Each token in the Moonshots tab includes real-time, high-signal data to guide your decision-making:

  • Trader Grade: How strong is this token’s short-term setup?
  • Change in Trader Grade: Is momentum building?
  • 24-Hour Volume: Is there growing interest or liquidity?
  • Market Cap: The smaller the cap, the more upside (and risk).
  • Date of Entry: When was this token added to the Moonshots list?
  • Live ROI Since Moonshot: Has the token already moved—or is it still early?

You can also switch to Past Moonshots to see historical performance. Many past Moonshots have shown gains of 3x–20x within days of being listed.

✅ Step 4: Choose a Token to Explore

Click on any token from the Moonshots list to open its Token Details Page.

Here’s what you’ll find:

  • Live charts with technical indicators
  • Token fundamentals like supply, utility, and project roadmap
  • Top holder data to spot whales or early VC involvement
  • Sentiment scores and momentum shifts

This is where you do your research. Look for projects with:

  • Increasing community engagement
  • Clear narratives (e.g., AI, DePIN, meme, Layer 2)
  • Early whale accumulation
  • Undiscovered by influencers or major Twitter accounts

✅ Step 5: Buy in Seconds

Once you’ve found a token you like:

  • Hit the “Buy” button right from the Moonshots interface.
  • A swap widget will open inside Token Metrics.
  • Connect your wallet and execute the trade within seconds—no need to leave the platform.

This frictionless experience allows you to act immediately before the market catches on.

Pro Tips for Moonshot Hunting

Finding the next 100x crypto is part art, part science. Here are a few tips to sharpen your strategy:

  • Don’t Chase Pumps: Look for tokens with fresh momentum, not ones that are already up 500%.
  • Use On-Chain Data: Look for early accumulation, token holder growth, and low exchange balances.
  • Diversify: Don’t go all in on a single moonshot—spread risk across 3–5 plays.
  • Set Targets: Know your entry and exit strategy. Moonshots can reverse fast.

Final Thoughts

The next 100x altcoin won’t look obvious at first. It will likely be a small-cap token with limited press, an emerging narrative, and strong community energy.

By combining smart research, disciplined entries, and tools like Token Metrics Moonshots, you give yourself a major edge in spotting breakout coins before the explosion.

So stop guessing. Start using AI-powered insights to track moonshots, monitor early signals, and make informed trades that could change your portfolio—and your life.

🎯 Try Token Metrics now and unlock the Moonshots tab.
Visit: www.tokenmetrics.com

Crypto Basics

How to Find 100x Altcoins Before They Explode | Token Metrics Moonshot Guide

Token Metrics Team
8 min
MIN

In the world of cryptocurrency, the term “moonshot” isn’t just slang—it’s the dream. A moonshot is that rare token that delivers 100x or even 1000x returns, turning small investments into massive profits. But the real question is: how do you find these altcoins before they explode?

In this guide, we’ll break down what moonshots are, how they work, and most importantly, how to use Token Metrics—the leading AI-powered crypto analytics platform—to discover hidden gems before the crowd catches on.

What Are Moonshot Altcoins?

Moonshots are low market cap altcoins with high growth potential. These tokens often start under the radar, trading at fractions of a cent, and then experience explosive price action fueled by community hype, technical breakthroughs, or big news.

Common Traits of Moonshot Altcoins:

  • Market Cap < $50M – Small enough to grow exponentially
  • High Volatility – Swings of 20–100% daily are not unusual
  • Speculative Narrative – Often driven by trend cycles like AI, DePIN, or meme coin mania
  • Community Driven – Strong social momentum via X (Twitter), Telegram, or Discord
  • Limited Listings – Usually launched on decentralized exchanges (DEXs) before hitting major CEXs

These tokens carry high risk but also high reward. Timing and information are everything—and that’s where Token Metrics comes in.

How Moonshot Altcoins Work

The mechanics behind a moonshot typically follow a cycle of accumulation, hype, breakout, and profit-taking:

  1. Early Accumulation – Smart money (including whales and insiders) buys in at low prices.
  2. Volume Spike – Trading activity picks up as new investors notice price movements.
  3. Parabolic Move – Price jumps rapidly due to FOMO and social media hype.
  4. Peak & Correction – Early buyers take profits, causing volatility or sharp retracement.

Catching the token in Phase 1 or 2 is crucial. If you're entering during the parabolic move, the risk/reward ratio is much worse.

That’s why traders and investors rely on data and AI-powered tools like Token Metrics to identify moonshots before they explode.

How to Use Token Metrics to Find Moonshots

Token Metrics offers a dedicated Moonshots feature powered by machine learning models trained on thousands of historical signals. It helps you find high-potential altcoins before they go mainstream.

Here’s a step-by-step guide to finding moonshot tokens using Token Metrics:

✅ Step 1: Go to the Ratings Page

  • From your Token Metrics dashboard, navigate to the “Ratings” tab.
  • This is where tokens are scored using Trader Grade and Investor Grade, based on factors like:
    • Technical indicators
    • On-chain activity
    • Market momentum
    • Social sentiment

Trader Grade is especially important for identifying short-term opportunities and moonshot candidates.

✅ Step 2: Click on the “Moonshots” Tab

Inside the Ratings page:

  • Click the “Moonshots” tab at the top.
  • This filters tokens identified by the platform’s AI as having short-term explosive potential.

These are not random picks—they are selected based on:

  • Sharp trader grade increases
  • Unusual volume and price action
  • Sentiment spikes
  • Market cap vs. performance anomalies

The Moonshots page refreshes in real-time to capture fast-moving opportunities.

✅ Step 3: Review Key Metrics

Each token listed in the Moonshots section includes crucial data to guide your decisions:

  • Trader Grade (with % change over time)
  • 24-Hour Trading Volume – Helps gauge interest and momentum
  • Market Cap – Smaller cap = higher potential upside
  • Date of Entry – Know exactly when the token was flagged
  • Live ROI Since Moonshot – See how it’s performed since it was listed

Want to see past winners? Just switch to “Past Moonshots” to view previous AI picks and how they performed over 7–14 days. Many tokens in this category have delivered 5x–20x returns in a matter of days.

✅ Step 4: Choose a Token to Explore

Click on any token from the list to open its Token Details Page.

Here, you can:

  • View a real-time price chart
  • Read a breakdown of fundamentals, including tokenomics, roadmap, and sector
  • See top holders (whales, insiders, or project wallets)
  • Review technical indicators, volume trends, and volatility

This deep-dive view gives you everything you need to make an informed decision—not just guesswork.

✅ Step 5: Buy in Seconds

Once you’ve done your due diligence:

  • Click the “Buy” button directly on the Moonshots page.
  • This opens a swap widget that connects to top DEXs.
  • Choose your wallet, confirm the swap, and you’re done—no need to leave the platform.

This seamless process saves time and allows you to act quickly in a fast-moving market.

Why Token Metrics Is the Best Tool for Moonshot Hunting

Finding 100x altcoins is about timing, data, and confidence. Token Metrics gives you all three:

🔍 Data-Backed Confidence

No more relying on anonymous influencers or Telegram groups. Token Metrics backs every moonshot with quantifiable metrics.

🧠 AI-Powered Predictions

The platform’s models constantly analyze price, volume, sentiment, and chain activity to spot anomalies and early breakouts.

📈 Transparent Track Record

You can review past Moonshots and their ROI—transparency that few platforms offer.

💡 Trade-Ready UI

With integrated swap functionality, you can go from discovery to execution in under a minute.

Final Thoughts

Finding the next 100x altcoin is never easy—but with the right tools, your odds improve dramatically.

Moonshots are real, and they happen frequently in crypto. But they’re only lucrative if you find them early, analyze them rationally, and manage your risk.

With Token Metrics, you don’t have to chase hype—you can rely on real-time analytics, AI-powered ratings, and actionable insights to guide your moonshot hunting.

If you're serious about catching the next 100x gem, start using Token Metrics today.

🚀 Start your free trial and unlock the Moonshots tab at TokenMetrics.com

Research

Andrena and the Rise of DePIN: Decentralized Internet in 2025

Token Metrics Team
8 min
MIN

Introduction:
Decentralized Physical Infrastructure Networks (DePINs) are rapidly emerging as one of the most transformative sectors in the blockchain space. In 2025, projects like Andrena are pushing the boundaries of what’s possible by bridging real-world hardware with decentralized protocols. This blog takes a closer look at the DePIN thesis, Andrena’s approach, and why this project is on the radar of top investors and analysts.

What Is DePIN?

DePIN stands for Decentralized Physical Infrastructure Networks. It refers to blockchain-powered networks that coordinate real-world infrastructure using token-based incentives. Use cases include:

  • Wireless internet (e.g., Helium)
  • Sensor networks (e.g., WeatherXM)
  • Storage and compute (e.g., Filecoin, Akash, Arweave)
  • Energy grids (e.g., PowerPod)

In short, DePINs decentralize infrastructure deployment and management using blockchain-based coordination tools.

Why DePIN Matters in 2025

  1. Infrastructure Gaps: Billions remain unconnected to the internet or lack access to basic digital services. DePINs offer a way to close these gaps without reliance on centralized telecoms.
  2. Token Incentives for Network Participation: Hardware operators are rewarded for contributing bandwidth, compute, or coverage—creating a new economic model.
  3. Real-World Utility: Unlike speculative tokens, DePIN projects often provide visible, tangible value from day one.

Introducing Andrena: The Helium of the Internet?

Andrena is a DePIN project building a decentralized internet backbone through a combination of physical devices and blockchain protocols. The project is developing a hardware device called Black Box, expected to launch in July.

Key features:

  • Distributed, peer-to-peer wireless coverage
  • Web3 native incentives for node operators
  • No reliance on centralized ISPs
  • Tentative deployments in New York City, Mexico City, and Accra
  • Deep integration with Helium Network and its infrastructure

Andrena aims to give individuals and communities the power to run their own internet access points and be compensated in a decentralized system.

Why It’s Generating Buzz

Token Metrics researchers flagged Andrena as a top pick for long-term infrastructure exposure. Here's why:

  • Backed by Top VCs: In its upcoming Series B, Andrena is reportedly raising funds from major firms including Polychain Capital, Archetype, Wintermute, and Coinbase Ventures.
  • Mass Market Vision: The goal is not just to serve crypto-native users, but also everyday consumers who simply want affordable, decentralized internet access.
  • Multi-layered Integration: Andrena will offer both physical routers and a browser extension, enabling different levels of participation.

Strategic Partnerships and Rollout

The project is currently in soft-launch mode with localized pilots and is pursuing exchange listings later this year. While details remain limited, the focus is on building a global decentralized ISP layer—a radical shift from the existing internet access model.

Why Andrena Could Succeed Where Others Struggled

Previous attempts at decentralized internet often failed due to:

  • Poor hardware UX
  • Limited adoption outside of crypto users
  • Unclear monetization models

Andrena appears to be addressing these pain points with:

  • Consumer-grade devices
  • Partner integrations (e.g., Helium)
  • Clear token utility tied to network usage and coverage
  • A well-capitalized, experienced founding team

Risks and Unknowns

As with all early-stage infrastructure projects, there are risks:

  • Uncertain regulatory frameworks around ISPs
  • Capital intensity of hardware production and distribution
  • Network growth dependent on physical deployment
  • Limited token utility details at this stage

Investors and builders should stay informed as more information becomes public.

How Token Metrics Is Tracking DePIN Growth

The Token Metrics platform is actively monitoring the DePIN space through metrics such as:

  • TVL (Total Value Locked) in related ecosystems
  • Developer activity and GitHub velocity
  • On-chain signal strength and token accumulation
  • Fundamental and technical ratings

Projects like Andrena and its ecosystem partners are closely watched for early indicators of momentum.

Final Thoughts

DePIN is one of the most compelling frontiers in crypto. It offers real-world, real-time applications that go far beyond speculation. Andrena is at the center of this movement, blending telecom hardware, Web3 incentives, and global deployment.

While it's still early, the signs are promising. From reputable backers to ambitious global plans, Andrena is a project worth watching in 2025 and beyond.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products