Back to blog
Crypto Basics

What is a Decentralized Exchange (DEX) and How does it Work?

Learn everything about decentralized exchanges (DEX) and how it works, in this descriptive guide.
Token Metrics Team
7 Minutes
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe

Cryptocurrencies have revolutionized the financial industry, allowing individuals to make transactions without intermediaries such as banks or financial institutions. 

However, traditional centralized exchanges, where cryptocurrencies are traded, have been criticized for their lack of transparency, security vulnerabilities, and susceptibility to hacking. 

Decentralized exchanges, on the other hand, provide a more secure and transparent way of trading cryptocurrencies. If you are a cryptocurrency enthusiast, you may have heard about DEX. But what is a DEX, and how does it work? 

In this article, we will explore the concept of decentralized exchanges, their benefits and drawbacks, and how they differ from centralized exchanges.

What is a DEX?

A decentralized exchange, or DEX, is a platform that allows users to trade cryptocurrencies without intermediaries or a centralized authority. DEXs are built on blockchain technology and use smart contracts to execute trades automatically.

Unlike centralized exchanges, where users have to deposit their funds into a third-party wallet, DEXs allow users to trade directly from their wallets, providing more control over their funds.

How does a DEX work?

DEX (Decentralized exchanges) use a peer-to-peer network of computers to connect buyers and sellers, allowing them to trade cryptocurrencies directly without intermediaries. 

DEXs operate using a decentralized order book, where users can submit buy and sell orders. When a buyer and seller agree on a price, a smart contract is executed automatically, transferring the funds from the buyer's wallet to the seller's wallet.

How to use DEX?

To get started with a decentralized exchange (DEX), you need to follow few steps:

  • Choose a DEX that suits your needs and has the cryptocurrencies you want to trade.
  • Connect your digital wallet to the DEX platform.
  • Transfer your cryptocurrency from your wallet to the DEX to start trading.
  • Keep in mind that DEX transactions may have higher fees and longer transaction times than centralized exchanges.

Note: Before utilizing a DEX, traders need to obtain a software crypto wallet that is compatible with the specific exchange. For instance, if someone intends to use an Ethereum based DEX, they should have an Ethereum-compatible wallet such as MetaMask.

How do DEX fees work?

DEX fees are generally higher than those charged by centralized exchanges because there is no central authority to process transactions. Instead, transactions on a DEX are processed through a network of users who are incentivized to keep the network running. 

This incentive comes in the form of transaction fees paid by users who want their transactions to be processed quickly. The more people who are using the network, the higher the fees will be. 

Additionally, some DEXs charge a fee for listing new tokens on their platform, which can be a way for the exchange to generate revenue. To avoid overpaying on fees, it's important to do your research and compare fees across different DEXs. 

With a little bit of knowledge and careful consideration, you can make the most of your DEX trading experience while minimizing fees.

What are the most popular DEXs?

There are several DEXs available in the market, each with its unique features and benefits. 

Uniswap - Uniswap is among the most popular DEXs, which is based on the Ethereum blockchain and allows users to trade Ethereum-based tokens. 

PancakeSwap - Another popular DEX is PancakeSwap, which is based on the Binance Smart Chain and offers lower fees compared to other DEXs. 

SushiSwap - SushiSwap is also a well-known DEX that offers yield farming, allowing users to earn additional tokens by providing liquidity to the platform. 

1inch - Another popular DEX is 1inch, which aggregates liquidity from multiple DEXs, providing users with the best possible price for their trades.

DEX Volume
Image Source: The Block Crypto Data

With a range of options available, it's important to do your research and compare different DEXs to find the one that best suits your trading needs.

Benefits of using a DEX?

Decentralized exchanges provide several benefits over centralized exchanges, including:

Security - One of the main benefits of DEXs is their security. Unlike centralized exchanges, where users' funds are held in a third-party wallet, DEXs allow users to maintain control over their funds at all times. DEXs use smart contracts to execute trades automatically, eliminating the risk of a hack or a security breach.

Transparency - Another benefit of DEXs is their transparency. All trades on a DEX are recorded on the blockchain, which is a public ledger. This means that anyone can view the trades and verify that they have been executed correctly.

No KYC Requirements - Many centralized exchanges require users to complete a KYC (Know Your Customer) process to verify their identity. DEXs, on the other hand, do not require any KYC information, providing users with more privacy and anonymity.

Access to More Coins - Unlike centralized exchanges, which often have a limited selection of coins available for trading, DEXs provide access to a broader range of cryptocurrencies.

Potential downsides of using a DEX?

While decentralized exchanges offer several benefits, they also have some drawbacks, including:

Lack of Liquidity - One of the main drawbacks of DEXs is their lack of liquidity. Because DEXs operate on a peer-to-peer network, the number of buyers and sellers can be limited, making it challenging to execute trades quickly.

Complexity - DEXs can be more complex to use than centralized exchanges, requiring users to have a certain level of technical knowledge and experience with blockchain technology.

Slower Transaction Times - Because DEXs use a peer-to-peer network to execute trades, transactions can be slower than on centralized exchanges, where trades are executed almost instantly.

Frequently Asked Questions (FAQs)

Q1. What is the difference between a centralized exchange and a decentralized exchange (DEX)?

Centralized exchanges are traditional exchanges where users deposit their funds into a third-party wallet, and trades are executed by a central authority. In contrast, DEXs allow users to trade directly from their wallets and use smart contracts to execute trades automatically, eliminating the need for a third-party intermediary.

Q2. Are decentralized exchanges safe?

Decentralized exchanges are generally considered to be safer than centralized exchanges, as they use smart contracts to execute trades automatically, eliminating the need for a third-party intermediary and reducing the risk of a security breach.

Q3. What are the benefits of using a decentralized exchange?

Decentralized exchanges provide several benefits, including increased security, transparency, and access to a broader range of cryptocurrencies.

Q4. Are decentralized exchanges more difficult to use than centralized exchanges?

Decentralized exchanges can be more complex to use than centralized exchanges, requiring users to have a certain level of technical knowledge and experience with blockchain technology.

Q5. What is the main drawback of using a decentralized exchange?

The main drawback of using a decentralized exchange is the lack of liquidity, which can make it challenging to execute trades quickly.

Q6. How can I start using a decentralized exchange?

To start using a decentralized exchange, you will need to have a cryptocurrency wallet that supports the DEX you want to use. You can then connect your wallet to the DEX and start trading cryptocurrencies.

Conclusion

Decentralized exchanges (DEXs) are regarded as a noteworthy breakthrough in the cryptocurrency arena, although they do not possess the same level of user-friendliness as centralized exchanges (CEXs).

DEXs' efforts towards decentralization and anonymity align with the fundamental values of cryptocurrency, making them particularly appealing to individuals who prioritize these tenets. With the anticipated influx of investors in the cryptocurrency market, it is foreseeable that DEXs will emerge as a more influential player in the financial landscape.

So, if you're looking for a more secure and transparent way to trade cryptocurrencies, consider giving decentralized exchange a try.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other sort of advice and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
About Token Metrics
Token Metrics: AI-powered crypto research and ratings platform. We help investors make smarter decisions with unbiased Token Metrics Ratings, on-chain analytics, and editor-curated “Top 10” guides. Our platform distills thousands of data points into clear scores, trends, and alerts you can act on.
30 Employees
analysts, data scientists, and crypto engineers
Daily Briefings
concise market insights and “Top Picks”
Transparent & Compliant
Sponsored ≠ Ratings; research remains independent
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Fast, Reliable APIs with FastAPI

Token Metrics Team
5

Fast API design is no longer just about response time — it’s about developer ergonomics, safety, observability, and the ability to integrate modern AI services. FastAPI (commonly referenced by the search phrase "fast api") has become a favored framework in Python for building high-performance, async-ready APIs with built-in validation. This article explains the core concepts, best practices, and deployment patterns to help engineering teams build reliable, maintainable APIs that scale.

Overview: What makes FastAPI distinct?

FastAPI is a Python web framework built on top of ASGI standards (like Starlette and Uvicorn) that emphasizes developer speed and runtime performance. Key differentiators include automatic request validation via Pydantic, type-driven documentation (OpenAPI/Swagger UI generated automatically), and first-class async support. Practically, that means less boilerplate, clearer contracts between clients and servers, and competitive throughput for I/O-bound workloads.

Async model and performance considerations

At the heart of FastAPI’s performance is asynchronous concurrency. By leveraging async/await, FastAPI handles many simultaneous connections efficiently, especially when endpoints perform non-blocking I/O such as database queries, HTTP calls to third-party services, or interactions with AI models. Important performance factors to evaluate:

  • ASGI server choice: Uvicorn and Hypercorn are common; tuning workers and loop settings affects latency and throughput.
  • Blocking calls: Avoid CPU-bound work inside async endpoints; offload heavy computation to worker processes or task queues.
  • Connection pooling: Use async database drivers and HTTP clients (e.g., asyncpg, httpx) with pooled connections to reduce latency.
  • Metrics and profiling: Collect request duration, error rates, and concurrency metrics to identify hotspots.

Design patterns: validation, schemas, and dependency injection

FastAPI’s integration with Pydantic makes data validation explicit and type-driven. Use Pydantic models for request and response schemas to ensure inputs are sanitized and outputs are predictable. Recommended patterns:

  • Separate DTOs and domain models: Keep Pydantic models for I/O distinct from internal database or business models to avoid tight coupling.
  • Dependencies: FastAPI’s dependency injection simplifies authentication, database sessions, and configuration handling while keeping endpoints concise.
  • Versioning and contracts: Expose clear OpenAPI contracts and consider semantic versioning for breaking changes.

Integration with AI services and external APIs

Many modern APIs act as orchestrators for AI models or third-party data services. FastAPI’s async-first design pairs well with calling model inference endpoints or streaming responses. Practical tips when integrating AI services:

  • Use async clients to call external inference or data APIs to prevent blocking the event loop.
  • Implement robust timeouts, retries with backoff, and circuit breakers to handle intermittent failures gracefully.
  • Cache deterministic responses where appropriate, and use paginated or streaming responses for large outputs to reduce memory pressure.

Deployment, scaling, and observability

Deploying FastAPI to production typically involves containerized ASGI servers, an API gateway, and autoscaling infrastructure. Core operational considerations include:

  • Process model: Run multiple Uvicorn workers per host for CPU-bound workloads or use worker pools for synchronous tasks.
  • Autoscaling: Configure horizontal scaling based on request latency and queue length rather than CPU alone for I/O-bound services.
  • Logging and tracing: Integrate structured logs, distributed tracing (OpenTelemetry), and request/response sampling to diagnose issues.
  • Security: Enforce input validation, rate limiting, authentication layers, and secure secrets management.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is the difference between FastAPI and Flask?

FastAPI is built for the async ASGI ecosystem and emphasizes type-driven validation and automatic OpenAPI documentation. Flask is a synchronous WSGI framework that is lightweight and flexible but requires more manual setup for async support, validation, and schema generation. Choose based on concurrency needs, existing ecosystem, and developer preference.

When should I use async endpoints in FastAPI?

Use async endpoints when your handler performs non-blocking I/O such as database queries with async drivers, external HTTP requests, or calls to async message brokers. For CPU-heavy tasks, prefer background workers or separate services to avoid blocking the event loop.

How do Pydantic models help with API reliability?

Pydantic enforces input types and constraints at the boundary of your application, reducing runtime errors and making APIs self-documenting. It also provides clear error messages, supports complex nested structures, and integrates tightly with FastAPI’s automatic documentation.

What are common deployment pitfalls for FastAPI?

Common issues include running blocking code in async endpoints, inadequate connection pooling, missing rate limiting, and insufficient observability. Ensure proper worker/process models, async drivers, and graceful shutdown handling when deploying to production.

How can I test FastAPI applications effectively?

Use FastAPI’s TestClient (based on Starlette’s testing utilities) for endpoint tests and pytest for unit and integration tests. Mock external services and use testing databases or fixtures for repeatable test runs. Also include load testing to validate performance under expected concurrency.

Is FastAPI suitable for production-grade microservices?

Yes. When combined with proper patterns—type-driven design, async-safe libraries, containerization, observability, and scalable deployment—FastAPI is well-suited for production microservices focused on I/O-bound workloads and integrations with AI or external APIs.

Disclaimer

This article is for educational and informational purposes only. It does not constitute professional, legal, or investment advice. Evaluate tools and architectures according to your organization’s requirements and consult qualified professionals when needed.

Research

Free APIs: Practical Guide for Crypto & AI Developers

Token Metrics Team
5

Free APIs unlock data and functionality for rapid prototyping, research, and lightweight production use. Whether you’re building an AI agent, visualizing on-chain metrics, or ingesting market snapshots, understanding how to evaluate and integrate a free API is essential to building reliable systems without hidden costs.

What a "Free API" Really Means

Not all "free" APIs are created equal. The term generally refers to services that allow access to endpoints without an upfront fee, but differences appear across rate limits, data freshness, feature scope, and licensing. A clear framework for assessment is: access model, usage limits, data latency, security, and terms of service.

  • Access model: API key, OAuth, or anonymous endpoints determine how you authenticate and control usage.
  • Usage limits: Calls per minute/day, concurrency limits, and burst policies affect feasibility for real-time applications.
  • Data latency and granularity: Historical snapshots versus streaming updates change how you design ingestion and caching.
  • Licensing and redistribution: Check whether you can store, display, or redistribute data; free tiers often restrict commercial redistribution.
  • Support and SLA: Free tiers rarely carry guarantees—plan for graceful degradation and rate-limit handling.

How to Evaluate Free APIs: A Practical Checklist

Use a methodical approach to compare options. Below is a pragmatic checklist that helps prioritize trade-offs between cost and capability.

  1. Define requirements: identify throughput, freshness, and fields required. A small set of critical fields reduces bandwidth and simplifies caching.
  2. Measure performance: run latency and error-rate tests from your target regions. Free endpoints can be geo-constrained.
  3. Examine rate limits: build sample load tests to confirm call quotas and how the provider enforces throttling.
  4. Check data provenance: verify how data is sourced and updated; for derived metrics, inspect calculation methods and versioning.
  5. Review terms: confirm allowed use cases, retention rights, and attribution requirements.
  6. Plan fallbacks: design multi-source strategies and caching layers to mitigate outages or caps.

For crypto-specific datasets, platforms such as Token Metrics illustrate how integrated analytics and API endpoints can complement raw data feeds by adding model-driven signals and normalized asset metadata.

Integration Patterns and Best Practices

Free APIs are most effective when integrated with resilient patterns. Below are recommended practices for teams and solo developers alike.

  • Client-side throttling: implement token buckets or leaky buckets to smooth bursts and reduce 429 errors.
  • Edge caching: cache responses at the CDN or application edge, with TTLs determined by acceptable staleness.
  • Incremental syncs: prefer delta queries where supported to limit payload sizes and conserve rate limits.
  • Graceful degradation: show cached or approximate data when the API is unavailable to preserve UX continuity.
  • Monitoring & observability: track request counts, error rates, and latency; alert on policy limit warnings rather than only on failures.
  • Security: never embed API keys in public repositories; use vaults or server-side proxies for authentication.

Use Cases and Scenario Analysis

Understanding where a free API fits in your architecture depends on the scenario. Consider three common patterns:

  1. Rapid prototyping: Free API tiers let teams validate hypotheses quickly. Favor simplicity and low setup friction here; strict rate limits are acceptable for early tests.
  2. Research and backtesting: Historical endpoints with bulk download capabilities are valuable. For reproducible experiments, verify dataset completeness and snapshot timestamps.
  3. Light production workloads: Small applications can rely on free tiers if architects combine caching, retry strategies, and multi-source redundancy to manage availability risks.

When working with AI agents or automated analytics, instrument data flows and label data quality explicitly. AI-driven research tools can accelerate dataset discovery and normalization, but you should always audit automated outputs and maintain provenance records.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common Questions About Free APIs

What limits should I expect on a free API?

Limits vary by provider but often include reduced daily/monthly call quotas, limited concurrency, and delayed data freshness. Review the provider’s rate-limit policy and test in your deployment region.

Can I use free APIs in production?

Yes for low-volume or non-critical paths, provided you incorporate caching, retries, and fallback logic. For mission-critical systems, evaluate paid tiers for SLAs and enhanced support.

How do I secure API keys for free tiers?

Store keys in environment-specific vaults, avoid client-side exposure, and rotate keys periodically. Use proxy layers to inject keys server-side when integrating client apps.

Are free APIs reliable for historical data needs?

Some free APIs provide robust historical endpoints, but completeness and retention policies differ. Validate by sampling known events and comparing across providers before depending on the dataset.

How can AI tools help when using free APIs?

AI tools can assist with data cleaning, anomaly detection, and feature extraction, making it easier to derive insight from limited free data. Always verify model outputs and maintain traceability to source calls.

What should I monitor after integrating a free API?

Track request volume, error rates (429/5xx), latency, and data staleness metrics. Set alerts for approaching throughput caps and automate graceful fallbacks to preserve user experience.

Is it legal to store and redistribute data from a free API?

Legal permissions depend on the provider’s terms. Some allow caching for display but prohibit redistribution or commercial resale. Always consult the API’s terms of service before storing or sharing data.

How do I plan for scale from a free tier?

Design with decoupled ingestion, caching, and multi-source redundancy so you can swap to paid tiers or alternative providers without significant refactoring.

Can multiple free APIs be combined?

Yes. Combining multiple sources improves resilience and data quality, but requires normalization, reconciliation logic, and latency-aware merging rules.

Disclaimer

This article is educational and informational only. It does not constitute financial, legal, or investment advice. Evaluate services and make decisions based on your own research and compliance requirements.

Research

Understanding REST Crypto APIs: Design, Security & Best Practices

Token Metrics Team
5 MIN

Modern web and mobile applications rely heavily on REST APIs to exchange data, integrate services, and enable automation. Whether you're building a microservice, connecting to a third-party data feed, or wiring AI agents to live systems, a clear understanding of REST API fundamentals helps you design robust, secure, and maintainable interfaces.

What is a REST API?

REST (Representational State Transfer) is an architectural style for distributed systems. A REST API exposes resources—often represented as JSON or XML—using URLs and standard HTTP methods. REST is not a protocol but a set of constraints that favor statelessness, resource orientation, and a uniform interface.

Key benefits include simplicity, broad client support, and easy caching, which makes REST a default choice for many public and internal APIs. Use-case examples include content delivery, telemetry ingestion, authentication services, and integrations between backend services and AI models that require data access.

Core Principles & HTTP Methods

Understanding core REST principles helps you map business entities to API resources and choose appropriate operations:

Adhering to these constraints makes integrations easier, especially when connecting analytics, monitoring, or AI-driven agents that rely on predictable behavior and clear failure modes.

Design Patterns and Best Practices

Building a usable REST API involves choices beyond the basics. Consider these patterns and practices:

For teams building APIs that feed ML or AI pipelines, consistent schemas and semantic versioning are particularly important. They minimize downstream data drift and make model retraining and validation repeatable.

Security, Monitoring, and Scaling

Security and operational visibility are core to production APIs:

Scaling often combines stateless application design, caching (CDNs or reverse proxies), and horizontal autoscaling behind load balancers. For APIs used by data-hungry AI agents, consider async patterns (webhooks, message queues) to decouple long-running tasks from synchronous request flows.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQs

What distinguishes REST from other API styles like GraphQL?

REST emphasizes resources and uses HTTP verbs and status codes. GraphQL exposes a flexible query language letting clients request only needed fields. REST is often simpler to cache and monitor, while GraphQL can reduce over-fetching for complex nested data. Choose based on client needs, caching, and complexity.

How should I version a REST API without breaking clients?

Common strategies include URI versioning (/v1/) and header-based versioning. Maintain backward compatibility whenever possible, provide deprecation notices, and publish migration guides. Semantic versioning of your API contract helps client teams plan upgrades.

What are practical steps to secure a public REST API?

Require TLS, use strong authentication (OAuth 2.0 or signed tokens), validate inputs, enforce rate limits, and monitor anomalous traffic. Regularly audit access controls and rotate secrets. Security posture should be part of the API lifecycle.

How can REST APIs support AI-driven workflows?

APIs can supply training data, feature stores, and live inference endpoints. Design predictable schemas, low-latency endpoints, and asynchronous jobs for heavy computations. Tooling and observability help detect data drift, which is critical for reliable AI systems. Platforms like Token Metrics illustrate how API-led data can support model-informed insights.

When should I use synchronous vs asynchronous API patterns?

Use synchronous Crypto APIs for short, fast operations with immediate results. For long-running tasks (batch processing, complex model inference), use asynchronous patterns: accept a request, return a job ID, and provide status endpoints or webhooks to report completion.

Disclaimer

This article is educational and technical in nature. It does not constitute investment, legal, or professional advice. Evaluate tools and architectures against your requirements and risks before deployment.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products