Crypto Basics

What is Helium Mining and How Helium Miner Works?

Learn everything about helium mining, and discover how helium miner works in this descriptive guide.
S. Vishwa
8 Minutes
MIN

In the world of cryptocurrencies and blockchain technology, helium mining has emerged as a captivating and innovative concept. With the rise of the Internet of Things (IoT), the need for a decentralized network has paved the way for helium mining to become a lucrative venture. 

But what exactly is helium mining, and how does a helium miner work? In this comprehensive guide, we will explore the ins and outs of helium mining, shedding light on its process, benefits, risks and much more.

What is Helium Mining?

Helium mining involves the process of validating and securing wireless IoT networks by deploying specialized hardware called helium miners. 

Unlike traditional cryptocurrencies that rely on proof-of-work or proof-of-stake algorithms, helium mining employs a unique consensus algorithm known as proof-of-coverage (PoC). 

This algorithm ensures the reliable and efficient operation of IoT devices while creating a decentralized network infrastructure.

How does Helium Miner Work?

A helium miner acts as a hotspot for IoT devices and facilitates the transmission of data over the helium network. The miner utilizes a low-power, long-range wireless communication protocol called LoRaWAN to connect with IoT devices within its range. 

The data transmitted by these devices is encapsulated within packets and sent to nearby miners. Helium miners then validate and relay the packets to the helium blockchain, ensuring the integrity and security of the network.

Components of a Helium Miner

A typical helium miner consists of the following components:

Antenna: The antenna enables the helium miner to send and receive data packets from IoT devices.

LoRaWAN Transceiver: This transceiver module facilitates long-range communication with IoT devices using the LoRaWAN protocol.

Processor: The processor acts as the brain of the helium miner, handling data validation, encryption, and communication tasks.

Storage: Helium miners are equipped with built-in storage to store data temporarily before relaying it to the blockchain.

Internet Connectivity: To connect with the helium blockchain, miners require an internet connection, usually through Ethernet or Wi-Fi.

Power Supply: Miners need a reliable power supply to operate continuously and ensure the smooth functioning of the helium network.

How to set up a Helium miner?(Process)

Setting up a helium miner is a straightforward process. Follow these steps to get started:

1. Choose the Right Helium Miner: Research and select a helium miner that aligns with your budget and mining goals.

2. Connect the Antenna: Attach the antenna to your helium miner securely for optimal signal transmission.

3. Establish Internet Connectivity: Connect your miner to the internet using an Ethernet cable or Wi-Fi.

4. Configure the Miner: Access the miner's interface through a web browser and configure the necessary settings.

5. Activate the Miner: Activate your helium miner by following the provided instructions, usually through a mobile app.

6. Join a Helium Network: Join a helium network by selecting an appropriate network server and inputting the required information.

7. Start Mining: Once your helium miner is activated and mining on the network, you can sit back and watch as your miner begins to contribute to the helium ecosystem.

Best Helium Miners to Earn HNT

These are few widely used Helium miners.

Helium Hotspot Miner: The official Helium Hotspot Miner is a reliable option, designed specifically for mining on the Helium network. It offers good performance and stability, making it a popular choice among miners.

Bobcat Miner 300: The Bobcat Miner 300 is another well-regarded option for Helium mining. It provides robust coverage and is known for its easy setup and user-friendly interface.

SenseCAP Miner: The SenseCAP Miner combines LoRaWAN and blockchain tech for efficient Helium mining with reliable coverage and user-friendly setup.

Milesight LoRaWAN: Milesight LoRaWAN is a rugged Helium miner using Long Range (LoRa) tech, providing reliable network coverage and efficient mining in various environments.

Nebra Rock Pi: The Nebra Rock Pi is a powerful and compact Helium miner with a Rockchip processor, Long Range (LoRa) connectivity, excellent network coverage, and energy efficiency.

Please note that the list provided is based on general knowledge, and it's always recommended to refer to the official documentation and user reviews for detailed specifications and features of each specific miner.

Benefits of Helium Mining

Helium mining offers a range of enticing benefits for individuals looking to delve into the world of decentralized networks. Let's explore some of the key advantages:

Passive Income: Helium mining provides an opportunity to earn passive income by simply setting up and running a helium miner. As your miner validates and relays data, you are rewarded with helium tokens, known as HNT, which can be converted into other cryptocurrencies or fiat currencies.

Decentralization and Security: Helium mining embraces the principles of decentralization, ensuring that no single entity has control over the network. This decentralized approach enhances network security and resilience, making it less susceptible to cyber attacks.

Community Engagement: Helium mining provides an opportunity to join a vibrant and passionate community of miners and IoT enthusiasts. Engage with like-minded individuals, share experiences, and stay up to date with the latest developments in the helium ecosystem.

Environmental Friendliness: Unlike traditional mining processes that consume significant amounts of energy, helium mining is relatively energy-efficient. The low-power requirements of helium miners make them an environmentally friendly option for cryptocurrency enthusiasts.

Risks associated with Helium mining

Helium mining, while offering potential rewards, is not without its risks. Here are significant risks and challenges -

Investment in mining hardware: Purchasing and setting up specialized equipment (Hotspots) can be costly.

Technological advancements: There is a risk of new technologies making current mining equipment obsolete or less profitable.

Network competition: As the number of Hotspots increases, mining rewards may decrease due to increased competition for block rewards.

Return on investment: It is important to consider the potential return on investment and the saturation level of the network before investing in mining equipment.

Regulatory risks: Governments may introduce regulations that could impact directly or indirectly the operation or profitability of Helium mining.

Cryptocurrency market volatility: The value of the native Helium cryptocurrency (HNT) can fluctuate, affecting the profitability of mining operations.

Ways to Earn HNT Tokens

There are several ways to earn HNT tokens, the native cryptocurrency of the Helium network. 

Firstly, one can participate in Helium mining by setting up and maintaining Hotspots, which serve as network gateways. Miners are rewarded with HNT tokens for providing network coverage and validating transactions. 

Secondly, individuals can engage in Proof-of-Coverage (PoC) challenges, which involve periodically proving their Hotspots' coverage and connectivity to earn additional HNT rewards. 

Additionally, users can contribute to the network by running Helium Validators, which secure the blockchain and receive HNT rewards.

Ways to Earn HNT Tokens

Another way to earn HNT is by running applications on the Helium network and receiving micropayments in HNT tokens for providing services or data.

Lastly, users can participate in community-driven initiatives, such as challenges, contests, or partnerships, which may offer opportunities to earn HNT tokens. 

It's important to note that the specific reward rates and mechanisms may vary over time, and it's important to stay updated with the latest information and guidelines from the Helium network.

Helium Mining Profitability in 2023

The profitability of mining Helium depends on various factors and individual circumstances. While mining Helium can be profitable, it's important to consider certain aspects.

These include the initial investment in mining hardware, ongoing operational costs, network saturation, and the fluctuating value of the native HNT cryptocurrency. Additionally, factors such as location, network coverage, and competition from other miners can impact profitability. 

Conducting thorough research, assessing the current market conditions, and understanding the potential risks are crucial in determining whether mining Helium is worth it for an individual.

Frequently Asked Questions

Q1. How much can I earn from helium mining?

Earnings from helium mining can vary based on factors such as miner location, network coverage, and the number of devices connected. However, successful miners have reported earning a substantial passive income.

Q2. What is the lifespan of a helium miner?

The lifespan of a helium miner can vary depending on factors such as usage, maintenance, and technological advancements. On average, miners can expect their devices to operate efficiently for several years.

Q3. Is helium mining profitable?

Helium mining has the potential to be profitable, especially when considering the rise in the value of HNT tokens. However, it's essential to research and understand the costs involved, including initial investment, electricity, and internet expenses.

Q4. Can I mine helium with regular consumer-grade hardware?

Helium mining requires specialized hardware known as helium miners. Regular consumer-grade hardware is not suitable for mining helium due to the specific requirements of the network.

Q5. Can I mine helium in any location?

Helium mining is location-dependent. To maximize mining potential, it is crucial to set up miners in areas with a high demand for IoT coverage and limited network saturation.

Q6. How can I optimize my helium mining earnings?

To optimize your helium mining earnings, consider factors such as miner placement, network coverage, and participating in strategic partnerships with IoT device owners.

Final thoughts

Helium mining presents an exciting opportunity to participate in the growth of the Internet of Things while earning passive income. By understanding the process and benefits of helium mining, you can embark on a rewarding journey in the world of decentralized networks.

Although earnings depend on many factors like choice of antenna, budget and geographical location, mining Helium is a good source for people looking to make some passive income.

Remember to conduct thorough research, choose the right equipment, and stay connected with the helium mining community for valuable insights and support.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other sort of advice and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Practical Guide to Building Robust REST APIs

Token Metrics Team
5
MIN

REST APIs power much of the web and modern integrations—from mobile apps to AI agents that consume structured data. Understanding the principles, common pitfalls, and operational practices that make a REST API reliable and maintainable helps teams move faster while reducing friction when integrating services.

What Is a REST API and Why It Matters

Representational State Transfer (REST) is an architectural style for networked applications. A REST API exposes resources (users, accounts, prices, etc.) via predictable HTTP endpoints and methods (GET, POST, PUT, DELETE). Its simplicity, cacheability, and wide tooling support make REST a go-to pattern for many back-end services and third-party integrations.

Key behavioral expectations include statelessness (each request contains the information needed to process it), use of standard HTTP status codes, and a resource-oriented URI design. These conventions improve developer experience and enable robust monitoring and error handling across distributed systems.

Core Design Principles and Endpoint Modeling

Designing a clear resource model at the outset avoids messy ad-hoc expansions later. Consider these guidelines:

  • Use nouns for resources: /users/123/orders, not /getUserOrder?id=123.
  • Support filtering and pagination: query parameters like ?limit=50&cursor=... prevent heavy payloads and improve UX.
  • Version with intent: /v1/ or header-based versioning can be used. Document breaking changes and provide migration paths.
  • Return consistent error shapes: include machine-readable codes, human messages, and optionally documentation links.

Model relationships thoughtfully: prefer nested resources for clarity (e.g., /projects/42/tasks) but avoid excessive nesting depth. A well-documented schema contract reduces integration errors and accelerates client development.

Authentication, Authorization & Security Practices

Security for REST APIs is multi-layered. Common patterns:

  • Token-based auth: OAuth 2.0 bearer tokens or API keys for service-to-service calls.
  • Scopes and RBAC: scope tokens narrowly to minimize blast radius; implement role-based access control for complex domains.
  • Transport security: always require TLS (HTTPS) and enforce secure headers (HSTS, CSP where relevant).
  • Validate inputs: server-side validation and strict schema checks prevent injection and logic errors.

Also consider rate limiting, token expiry, and key rotation policies. For APIs that surface sensitive data, adopt least-privilege principles and audit logging so access patterns can be reviewed.

Performance, Caching & Reliability

Latency and scalability are often where APIs meet their limits. Practical levers include:

  • HTTP caching: use ETags, Cache-Control, and conditional requests to reduce payloads and server load.
  • Pagination and streaming: avoid returning entire datasets; prefer cursors or chunked responses for large collections.
  • CDN and edge caching: cache public or semi-static responses at the edge to reduce origin traffic.
  • Graceful degradation and circuit breakers: fallback behaviors for downstream failures keep core features available.

Instrument your API with observability: structured logs, distributed traces, and metrics (latency, error rates, throughput). These signals enable data-driven tuning and prioritized fixes.

Testing, Tooling & Developer Experience

Quality APIs are well-tested and easy to adopt. Include:

  • Contract tests: verify server responses meet the documented schema to prevent regressions.
  • Integration and end-to-end tests: test authentication flows, error handling, and rate-limit behaviors.
  • Interactive docs and SDKs: OpenAPI/Swagger specs, Postman collections, and generated client libraries lower friction for integrators.
  • Mock servers: let front-end and AI agent teams iterate without waiting on back-end deployments.

Automate CI checks that validate linting, schema changes, and security scanning to maintain long-term health.

REST APIs for Crypto Data and AI Agents

When REST APIs expose market data, on-chain metrics, or signal feeds for analytics and AI agents, additional considerations apply. Data freshness, deterministic timestamps, provenance metadata, and predictable rate limits matter for reproducible analytics. Design APIs so consumers can:

  • Request time-series data with explicit timezones and sampling resolutions.
  • Retrieve provenance (source, block number, or snapshot id) to allow historical reconstruction.
  • Subscribe to webhooks or use polling efficiently to keep agents synchronized without exceeding quotas.

AI-driven workflows often combine multiple endpoints; consistent schemas and clear quotas simplify orchestration and reduce operational surprises. For example, Token Metrics demonstrates how structured crypto insights can be surfaced via APIs to support research and model inputs for agents.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

Frequently Asked Questions

What is the difference between REST and RESTful?

"REST" refers to the architectural constraints defined by Roy Fielding. "RESTful" is an informal adjective describing APIs that follow REST principles—though implementations vary in how strictly they adhere to the constraints.

How should I version a REST API?

Use semantic intent when versioning. URL-based versions (e.g., /v1/) are explicit, while header-based or content negotiation approaches avoid URL churn. Regardless, document deprecation timelines and provide backward-compatible pathways.

When should I use REST versus GraphQL?

REST is simple and cache-friendly for resource-centric models. GraphQL excels when clients need flexible queries across nested relationships. Consider client requirements, caching strategy, and operational complexity when choosing.

How do I handle rate limiting and quotas?

Expose limit headers, return standard status codes (e.g., 429), and provide retry-after guidance. Offer tiered quotas and clear documentation so integrators can design backoffs and fallback strategies.

What tools help document and test REST APIs?

OpenAPI (Swagger) for specs, Postman for interactive exploration, Pact for contract testing, and CI-integrated schema validators are common choices. Combine these with monitoring and API gateways for observability and enforcement.

Disclaimer

This article is for educational and technical reference only. It is not financial, legal, or investment advice. Always evaluate tools and services against your own technical requirements and compliance obligations before integrating them into production systems.

Research

Mastering REST APIs: Principles, Design, Practices

Token Metrics Team
5
MIN

REST APIs power most modern web and mobile back ends by providing a uniform, scalable way to exchange data over HTTP. Whether you are building microservices, connecting AI agents, or integrating third‑party feeds, understanding the architectural principles, design patterns, and operational tradeoffs of REST can help you build reliable systems. This article breaks down core concepts, design best practices, security measures, and practical steps to integrate REST APIs with analytics and AI workflows.

Understanding REST API Fundamentals

REST (Representational State Transfer) is an architectural style for distributed systems. It emphasizes stateless interactions, resource-based URIs, and the use of standard HTTP verbs (GET, POST, PUT, DELETE, PATCH). Key constraints include:

  • Statelessness: Each request contains all necessary context, simplifying server design and enabling horizontal scaling.
  • Resource orientation: Resources are identified by URIs and represented in formats such as JSON or XML.
  • Uniform interface: Consistent use of HTTP methods and status codes improves predictability and interoperability.

When designing APIs, aim for clear resource models, intuitive endpoint naming, and consistent payload shapes. Consider versioning strategies (URL vs header) from day one to avoid breaking clients as your API evolves.

Design Patterns and Best Practices for REST APIs

Good API design balances usability, performance, and maintainability. Adopt these common patterns:

  • Resource naming: Use plural nouns (/users, /orders) and hierarchical paths to express relationships.
  • HTTP semantics: Map create/read/update/delete to POST/GET/PUT/DELETE and use PATCH for partial updates.
  • Pagination and filtering: Return large collections with pagination (cursor or offset) and provide filters and sort parameters.
  • Hypermedia (HATEOAS): Include links to related resources when appropriate to make APIs self-descriptive.
  • Error handling: Use structured error responses with machine-readable codes and human-friendly messages.

Document endpoints with examples and schemas (OpenAPI/Swagger). Automated documentation and SDK generation reduce integration friction and lower client-side errors.

Securing and Scaling REST APIs

Security and operational resilience are core concerns for production APIs. Consider the following layers:

  • Authentication & authorization: Use OAuth2, JWT, or API keys depending on threat model. Keep tokens short-lived and enforce least privilege.
  • Input validation: Validate all incoming data to prevent injection and logic vulnerabilities.
  • Rate limiting & throttling: Protect backends from abuse and noisy neighbors by implementing quotas and backoff signals.
  • Transport security: Enforce TLS (HTTPS) and configure secure ciphers and headers.
  • Observability: Expose metrics, structured logs, and distributed traces to troubleshoot latency and failure modes.

For scale, design for statelessness so instances are replaceable, use caching (HTTP cache headers, CDN, or edge caches), and partition data to reduce contention. Use circuit breakers and graceful degradation to maintain partial service during downstream failures.

Integrating REST APIs with AI, Analytics, and Crypto Workflows

REST APIs are frequently used to feed AI models, aggregate on‑chain data, and connect analytics pipelines. Best practices for these integrations include:

  • Schema contracts: Define stable, versioned schemas for model inputs and analytics outputs to avoid silent breakages.
  • Batch vs streaming: Choose between batch endpoints for bulk processing and streaming/webhook patterns for real‑time events.
  • Data provenance: Attach metadata and timestamps so downstream models can account for data freshness and lineage.
  • Testing: Use contract tests and synthetic data generators to validate integrations before deploying changes.

To accelerate research workflows and reduce time-to-insight, many teams combine REST APIs with AI-driven analytics. For example, external platforms can provide curated market and on‑chain data through RESTful endpoints that feed model training or signal generation. One such option for consolidated crypto data access is Token Metrics, which can be used as part of an analysis pipeline to augment internal data sources.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common REST API Questions

What is the difference between REST and RESTful?

REST is an architectural style defined by constraints; "RESTful" describes services that adhere to those principles. In practice, many APIs are called RESTful even if they relax some constraints, such as strict HATEOAS.

When should I version an API and how?

Version early when breaking changes are likely. Common approaches are path versioning (/v1/) or header-based versioning. Path versioning is simpler for clients, while headers keep URLs cleaner. Maintain compatibility guarantees in your documentation.

How do I choose between REST and GraphQL?

REST is straightforward for resource-centric designs and benefits from HTTP caching and simple tooling. GraphQL excels when clients need flexible queries and to reduce over-fetching. Choose based on client needs, caching requirements, and team expertise.

What are practical rate limiting strategies?

Use token bucket or fixed-window counters, and apply limits per API key, IP, or user. Provide rate limit headers and meaningful status codes (429 Too Many Requests) to help clients implement backoff and retry strategies.

How can I test and monitor a REST API effectively?

Combine unit and integration tests with contract tests (OpenAPI-driven). For monitoring, collect metrics (latency, error rates), traces, and structured logs. Synthetic checks and alerting on SLA breaches help detect degradations early.

What is the best way to document an API?

Use OpenAPI/Swagger to provide machine-readable schemas and auto-generate interactive docs. Include examples, authentication instructions, and clear error code tables. Keep docs in version control alongside code.

Disclaimer

This article is educational and informational only. It does not constitute financial, investment, legal, or professional advice. Evaluate tools and services independently and consult appropriate professionals for specific needs.

Research

Mastering REST APIs: Principles, Design, and Best Practices

Token Metrics Team
5
MIN

REST APIs power much of the modern web, mobile apps, and integrations between services. Whether you are building a backend for a product, connecting to external data sources, or composing AI agents that call external endpoints, understanding REST API fundamentals helps you design reliable, maintainable, and performant systems.

What is a REST API and why it matters

Representational State Transfer (REST) is an architectural style that uses simple HTTP verbs to operate on resources identified by URLs. A REST API exposes these resources over HTTP so clients can create, read, update, and delete state in a predictable way. Key benefits include:

  • Stateless interactions that simplify scaling and load balancing.
  • Uniform interface using standard HTTP verbs (GET, POST, PUT/PATCH, DELETE).
  • Human-readable endpoints and predictable behavior for developers and tools.

REST is not a strict protocol; it is a set of constraints that make APIs easier to consume and maintain. Understanding these constraints enables clearer contracts between services and smoother integration with libraries, SDKs, and API gateways.

Core principles and common HTTP methods

Designing a RESTful API starts with resources and consistent use of HTTP semantics. Typical patterns include:

  • Resource-oriented URLs: /users/123/orders/456 rather than RPC-style method names.
  • HTTP methods: GET for reads, POST for creation, PUT/PATCH for updates, DELETE for deletion.
  • Status codes: 200 OK, 201 Created, 204 No Content, 400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found, 429 Too Many Requests, 500 Server Error.
  • Content negotiation: Use Accept and Content-Type headers (application/json, application/xml) to support clients.

Use idempotency for safety: GET, PUT, and DELETE should be safe to retry without causing unintended side effects. POST is commonly non-idempotent unless an idempotency key is provided.

Design patterns: pagination, filtering, and versioning

As APIs grow, practical patterns help keep them efficient and stable:

  • Pagination: Offer cursor-based or offset-based pagination for collections. Cursor pagination generally performs better at scale.
  • Filtering and sorting: Support query parameters (e.g., ?status=active&sort=-created_at) and document allowed fields.
  • Versioning: Avoid breaking changes by putting versions in the URL (/v1/) or in headers. Maintain clear deprecation policies and migration guides.
  • Hypermedia (HATEOAS): Optionally include links to related resources to help clients discover available actions.

Security, performance, and operational best practices

Security and reliability are essential for production APIs. Consider these practices:

  • Authentication & authorization: Prefer OAuth2, JWTs, or API keys depending on your use case. Use scopes and least-privilege access.
  • Transport security: Enforce TLS for all endpoints and disable deprecated TLS ciphers.
  • Rate limiting and quotas: Protect your backend and provide clear error responses (429) with retry headers.
  • Caching: Use HTTP caching headers (Cache-Control, ETag) and CDN fronting for read-heavy endpoints.
  • Monitoring and observability: Emit structured logs, metrics, and distributed traces so you can diagnose latency, errors, and bottlenecks.

These controls reduce downtime and make integration predictable for client teams and third-party developers.

Testing, documentation, and developer experience

Good testing and clear docs accelerate adoption and reduce bugs:

  • Automated tests: Unit test controllers and routes, and use integration tests against a staging environment or simulated backend.
  • Contract testing: Tools like OpenAPI/Swagger and schema validation ensure clients and servers agree on payloads and types.
  • Interactive docs and SDKs: Provide OpenAPI specs, example curl commands, and autogenerated client libraries for common languages.
  • Postman and CI: Use Postman collections or similar for exploratory testing and include API checks in CI pipelines.

These measures improve developer productivity and reduce the risk of downstream failures when APIs evolve.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is the difference between REST and RESTful?

REST is the architectural style; RESTful typically describes APIs that follow REST constraints such as statelessness, resource orientation, and use of HTTP verbs. In practice the terms are often used interchangeably.

When should I use PUT vs PATCH?

PUT generally replaces a full resource and is idempotent; PATCH applies partial changes and may not be idempotent unless designed to be. Choose based on whether clients send full or partial resource representations.

How do I choose between URL versioning and header versioning?

URL versioning (/v1/) is simple and visible to clients, while header versioning is cleaner from a URL standpoint but harder for users to discover. Pick a strategy with a clear migration and deprecation plan.

What are common causes of REST API performance issues?

Typical causes include unoptimized database queries, chatty endpoints that require many requests, lack of caching, and large payloads. Use profiling, caching, and pagination to mitigate these issues.

How can REST APIs support AI agents?

AI agents often orchestrate multiple data sources and services via REST APIs. Well-documented, authenticated, and idempotent endpoints make it safer for agents to request data, trigger workflows, and integrate model outputs into applications.

What tools help with API design and documentation?

OpenAPI/Swagger, Postman, Redoc, and API gateways (e.g., Kong, Apigee) are common. They help standardize schemas, run automated tests, and generate SDKs for multiple languages.

Disclaimer

This article is educational and informational only. It does not constitute professional advice. Evaluate technical choices and platforms based on your project requirements and security needs.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products