Research

Non-Fungible Token (NFT): What It Means and How It Works?

Learn more about an NFT, or non-fungible token, and how it works.
Token Metrics Team
12 minutes
MIN

The most expensive NFT sale to date was Beeple's Everydays: The First 5000 Days, which sold for $69.3 million. This highlights the growing interest in NFTs and the potential for them to be used as a vehicle for sharing virtually any form of media using the blockchain.

But what is an NFT? Let's find out.

What is an NFT?

NFTs, or non-fungible tokens, are unique digital assets with blockchain-managed ownership. They are stored on a blockchain and cannot be replicated or destroyed, making them resistant to tampering. NFTs can represent a wide range of items, including game items, digital art, collectibles, event tickets, and even ownership records for physical assets.

Unlike traditional cryptocurrencies, which are interchangeable and can be easily replicated, NFTs are non-fungible, meaning they have unique qualities that make them one-of-a-kind. This is why NFTs have gained popularity in the art world, where they can be used to verify the authenticity of a digital artwork and ensure that it cannot be copied or stolen.

How Can We Ensure Unique Authenticity?

When someone purchases an NFT, they not only receive the artwork itself, but also a digital receipt that proves that the piece is original, unique, and authentic. This receipt is stored on the blockchain and can be easily accessed and verified by anyone who wants to confirm the ownership and authenticity of the NFT.

While it is technically possible for someone to take a screenshot of an NFT and claim that they own it, this does not give them legal ownership of the artwork. Just like taking a picture of the Mona Lisa at the Louvre does not mean that you own the painting, taking a screenshot of an NFT does not give you ownership of the artwork.

To legally own an NFT, you must purchase it using cryptocurrency and store it in a virtual showcase. This allows you to own and display your artwork in a way that is secure and verifiable, and it ensures that you are the legal owner of the NFT.

NFT Basics You Need To Know

Non-fungible tokens (NFTs) are unique digital files that are stored on a blockchain. A blockchain is a decentralized, public digital ledger that records every transaction that takes place on the decentralized web. This means that the entire history of an NFT, including its creator, properties, transactions, and smart contracts, is backed by a powerful blockchain.

NFTs are different from fungible tokens, such as Bitcoin or Ethereum, which are interchangeable and store value. In contrast, NFTs store data on the blockchain, making them unique and non-replicable.

Important Traits Of NFTs

Some key characteristics of NFTs include:

  • Digital ownership: NFTs are owned and controlled by the individuals who hold them in their digital wallets.
  • Permanent: The data associated with an NFT is permanently stored within the token itself. This can include images, messages, signatures, or any other data.
  • Permission-less: NFTs can be built on a permission-less blockchain, such as Ethereum, meaning that anyone can create and use them.
  • Programmable: Because an NFT is just a piece of code on a blockchain, it can be programmed to have various attributes. For example, an NFT artwork might be programmed to pay the artist royalties on every secondary sale of that artwork.
  • Unique: The uniqueness of an NFT can be verified on the blockchain, ensuring that it is one-of-a-kind and cannot be replicated.

How to Own One? 

To create an NFT, there are several steps that you can follow:

  1. Get your media ready: NFTs support a variety of file types, such as MP3 audio, JPG and PNG images, and 3D files like GLB.
  2. Set up a non-custodial wallet: This will allow you to securely store the cryptocurrency that you will use to buy, sell, and create NFTs. Wallets are also necessary for signing in and creating accounts on NFT marketplaces.
  3. Buy Ethereum or other fungible tokens: You will need to purchase cryptocurrency to cover the cost of minting your NFT.
  4. Connect your wallet to an NFT marketplace: Popular options include Rarible and OpenSea. Connect your wallet by tapping the "Connect" button in the top right corner of the screen. This will create your account and allow you to start creating, minting, and selling your NFTs.
  5. Upload your file and describe your asset: Once you have connected your wallet, you can upload your file to the marketplace and provide a description of your asset. Decide if you want to create a standalone piece or multiple copies of the same NFT.
  6. Mint your NFT: The minting process requires Ethereum for transaction approvals. Once complete, your digital artwork will be ready to be traded and purchased on the marketplace.

Once you have created your NFT, there are several things that you can do with it:

  • Buy and sell it on a marketplace
  • Trade or gift it to others
  • Use it in apps or games
  • Showcase your public NFT inventory on a platform or social media.

The Secondary Markets for NFTs

NFT minting platforms enable creators to create non-fungible tokens (NFTs) to retain more control over their creative output. These NFTs can be sold on the following secondary marketplaces:

  • OpenSea: The first and largest marketplace for NFTs, OpenSea is committed to using open protocols like Ethereum and interoperable standards like ERC-721 and ERC-1155 to enable new digital economies. The platform allows consumers to trade items freely, creators to launch new digital works, and developers to build marketplaces for their digital items. It recently launched the beta version of its Solana-based NFT marketplace.
  • Coinbase NFT: Coinbase recently opened its NFT marketplace to the public in beta. The marketplace acts as a social media platform where users can buy, sell, and interact with NFTs. It aims to make minting, purchasing, showcasing, and discovering NFTs easier.
  • Solanart: Solanart is the first and largest fully-fledged NFT marketplace on Solana. Users can easily access digital collectibles and explore, buy, and sell NFTs that run on the Solana blockchain.
  • Rarible: Rarible is a do-it-yourself NFT marketplace where creators can mint NFTs with ease. The platform's native governance token, "RARI," is used to incentivize users and give the community a voice. However, unrestricted access means that Rarible has become a place for people to mint counterfeit versions of existing NFTs.
  • Nifty Gateway: Owned by the Gemini crypto exchange, Nifty Gateway is a popular NFT marketplace that focuses on user-friendly and viral drops by celebrated artists.
  • SuperRare: SuperRare (SR) is one of Ethereum's first crypto-art NFT marketplaces. Only accepted artists can participate in the platform, where users can discover, buy, and sell tokenized digital art and showcase their collections.

The demand for secondary NFT sales is growing rapidly, leading to increased competition among these marketplaces. Like the early days of Web 1 and 2.0, the emergence of Web 3.0 has created an open market where these platforms must find ways to attract and retain customers.

Some Notable NFT Projects

The thriving NFT market has led to the launch of several high-value projects, including the following companies:

  • Yuga Labs: a blockchain technology company that develops Ethereum-based NFTs and digital collectibles. Yuga's first project, Bored Ape Yacht Club, is one of the most valuable NFT collectibles in the space. The company has also rewarded its holders with free NFTs and other perks. Yuga Labs recently acquired Larva Labs, which brings high-value projects like Cryptopunks and Meebits under the Yuga brand. The company is backed by investors like Coinbase, Samsung, and Mark Cuban.
  • Doodles: a collection of 10,000 Ethereum-based NFTs featuring unique visual traits designed by BurntToast. The Doodles collection includes rare heads, costumes, and colorways, and the universe is ever-expanding. Owners of Doodles have exclusive access to new products, merchandise, and events.
  • Okay Bears: a collection of 10,000 Solana-based NFTs. Ownership of an Okay Bear grants access to a virtuous community that will extend beyond the internet into the real world.

‍The Future of NFTs

Blockchain technology is known for its ability to represent assets and prove ownership. NFTs take this a step further by enabling people to potentially purchase non-fungible assets like land and gold. The global market cap for gold and real estate is over $300 trillion, so even a small percentage of that being tokenized would greatly increase the total crypto market cap. Tokenized real estate offers ordinary people the opportunity to invest in real estate, which has traditionally been difficult for the average person to participate in.

NFTs also have applications in other industries. For example, Nike recently filed a patent for NFT-enabled sneakers called "CryptoKicks." In 2019, Louis Vuitton announced plans to use NFTs to track the ownership of luxury fashion items. NFTs can also be used to tokenize certifications, degrees, and licenses, as well as sensitive data like medical records. The potential for NFTs to show ownership of any non-fungible commodity, whether real or virtual, is vast.

In conclusion, the use of non-fungible tokens (NFTs) has expanded beyond digital art and collectibles to include a wide range of real and virtual assets. The ability of NFTs to represent and prove ownership offers exciting possibilities for industries such as real estate, fashion, and even healthcare. As the technology and market continue to evolve, the potential applications for NFTs are endless.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Free APIs: Practical Guide for Crypto & AI Developers

Token Metrics Team
5
MIN

Free APIs unlock data and functionality for rapid prototyping, research, and lightweight production use. Whether you’re building an AI agent, visualizing on-chain metrics, or ingesting market snapshots, understanding how to evaluate and integrate a free API is essential to building reliable systems without hidden costs.

What a "Free API" Really Means

Not all "free" APIs are created equal. The term generally refers to services that allow access to endpoints without an upfront fee, but differences appear across rate limits, data freshness, feature scope, and licensing. A clear framework for assessment is: access model, usage limits, data latency, security, and terms of service.

  • Access model: API key, OAuth, or anonymous endpoints determine how you authenticate and control usage.
  • Usage limits: Calls per minute/day, concurrency limits, and burst policies affect feasibility for real-time applications.
  • Data latency and granularity: Historical snapshots versus streaming updates change how you design ingestion and caching.
  • Licensing and redistribution: Check whether you can store, display, or redistribute data; free tiers often restrict commercial redistribution.
  • Support and SLA: Free tiers rarely carry guarantees—plan for graceful degradation and rate-limit handling.

How to Evaluate Free APIs: A Practical Checklist

Use a methodical approach to compare options. Below is a pragmatic checklist that helps prioritize trade-offs between cost and capability.

  1. Define requirements: identify throughput, freshness, and fields required. A small set of critical fields reduces bandwidth and simplifies caching.
  2. Measure performance: run latency and error-rate tests from your target regions. Free endpoints can be geo-constrained.
  3. Examine rate limits: build sample load tests to confirm call quotas and how the provider enforces throttling.
  4. Check data provenance: verify how data is sourced and updated; for derived metrics, inspect calculation methods and versioning.
  5. Review terms: confirm allowed use cases, retention rights, and attribution requirements.
  6. Plan fallbacks: design multi-source strategies and caching layers to mitigate outages or caps.

For crypto-specific datasets, platforms such as Token Metrics illustrate how integrated analytics and API endpoints can complement raw data feeds by adding model-driven signals and normalized asset metadata.

Integration Patterns and Best Practices

Free APIs are most effective when integrated with resilient patterns. Below are recommended practices for teams and solo developers alike.

  • Client-side throttling: implement token buckets or leaky buckets to smooth bursts and reduce 429 errors.
  • Edge caching: cache responses at the CDN or application edge, with TTLs determined by acceptable staleness.
  • Incremental syncs: prefer delta queries where supported to limit payload sizes and conserve rate limits.
  • Graceful degradation: show cached or approximate data when the API is unavailable to preserve UX continuity.
  • Monitoring & observability: track request counts, error rates, and latency; alert on policy limit warnings rather than only on failures.
  • Security: never embed API keys in public repositories; use vaults or server-side proxies for authentication.

Use Cases and Scenario Analysis

Understanding where a free API fits in your architecture depends on the scenario. Consider three common patterns:

  1. Rapid prototyping: Free API tiers let teams validate hypotheses quickly. Favor simplicity and low setup friction here; strict rate limits are acceptable for early tests.
  2. Research and backtesting: Historical endpoints with bulk download capabilities are valuable. For reproducible experiments, verify dataset completeness and snapshot timestamps.
  3. Light production workloads: Small applications can rely on free tiers if architects combine caching, retry strategies, and multi-source redundancy to manage availability risks.

When working with AI agents or automated analytics, instrument data flows and label data quality explicitly. AI-driven research tools can accelerate dataset discovery and normalization, but you should always audit automated outputs and maintain provenance records.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common Questions About Free APIs

What limits should I expect on a free API?

Limits vary by provider but often include reduced daily/monthly call quotas, limited concurrency, and delayed data freshness. Review the provider’s rate-limit policy and test in your deployment region.

Can I use free APIs in production?

Yes for low-volume or non-critical paths, provided you incorporate caching, retries, and fallback logic. For mission-critical systems, evaluate paid tiers for SLAs and enhanced support.

How do I secure API keys for free tiers?

Store keys in environment-specific vaults, avoid client-side exposure, and rotate keys periodically. Use proxy layers to inject keys server-side when integrating client apps.

Are free APIs reliable for historical data needs?

Some free APIs provide robust historical endpoints, but completeness and retention policies differ. Validate by sampling known events and comparing across providers before depending on the dataset.

How can AI tools help when using free APIs?

AI tools can assist with data cleaning, anomaly detection, and feature extraction, making it easier to derive insight from limited free data. Always verify model outputs and maintain traceability to source calls.

What should I monitor after integrating a free API?

Track request volume, error rates (429/5xx), latency, and data staleness metrics. Set alerts for approaching throughput caps and automate graceful fallbacks to preserve user experience.

Is it legal to store and redistribute data from a free API?

Legal permissions depend on the provider’s terms. Some allow caching for display but prohibit redistribution or commercial resale. Always consult the API’s terms of service before storing or sharing data.

How do I plan for scale from a free tier?

Design with decoupled ingestion, caching, and multi-source redundancy so you can swap to paid tiers or alternative providers without significant refactoring.

Can multiple free APIs be combined?

Yes. Combining multiple sources improves resilience and data quality, but requires normalization, reconciliation logic, and latency-aware merging rules.

Disclaimer

This article is educational and informational only. It does not constitute financial, legal, or investment advice. Evaluate services and make decisions based on your own research and compliance requirements.

Research

Understanding REST APIs: Design, Security & Best Practices

Token Metrics Team
5
MIN

Modern web and mobile applications rely heavily on REST APIs to exchange data, integrate services, and enable automation. Whether you're building a microservice, connecting to a third-party data feed, or wiring AI agents to live systems, a clear understanding of REST API fundamentals helps you design robust, secure, and maintainable interfaces.

What is a REST API?

REST (Representational State Transfer) is an architectural style for distributed systems. A REST API exposes resources—often represented as JSON or XML—using URLs and standard HTTP methods. REST is not a protocol but a set of constraints that favor statelessness, resource orientation, and a uniform interface.

Key benefits include simplicity, broad client support, and easy caching, which makes REST a default choice for many public and internal APIs. Use-case examples include content delivery, telemetry ingestion, authentication services, and integrations between backend services and AI models that require data access.

Core Principles & HTTP Methods

Understanding core REST principles helps you map business entities to API resources and choose appropriate operations:

  • Resources: Model nouns (e.g., /users, /orders) rather than actions.
  • Statelessness: Every request should contain all information to process it; avoid server-side session state.
  • Representation: Use consistent formats such as JSON:API or HAL for predictable payloads.
  • HTTP Verbs: GET for retrieval, POST to create, PUT/PATCH to update, DELETE to remove. Idempotency and safety semantics matter when designing retries and error handling.
  • Status Codes: Use standard HTTP status codes (200, 201, 204, 400, 401, 403, 404, 429, 500) to communicate outcomes clearly to clients.

Adhering to these constraints makes integrations easier, especially when connecting analytics, monitoring, or AI-driven agents that rely on predictable behavior and clear failure modes.

Design Patterns and Best Practices

Building a usable REST API involves choices beyond the basics. Consider these patterns and practices:

  • Versioning: Use URI (e.g., /v1/) or header-based versioning to avoid breaking clients when evolving schemas.
  • Pagination and Filtering: Support limit/offset or cursor-based pagination and flexible query filters to keep responses performant.
  • Hypermedia (HATEOAS): Optionally include links to related resources to improve discoverability for advanced clients.
  • Idempotency Keys: For non-idempotent operations, accept idempotency keys so retries don’t create duplicates.
  • Documentation and SDKs: Maintain OpenAPI/Swagger specs and generate client SDKs to reduce integration friction.

For teams building APIs that feed ML or AI pipelines, consistent schemas and semantic versioning are particularly important. They minimize downstream data drift and make model retraining and validation repeatable.

Security, Monitoring, and Scaling

Security and operational visibility are core to production APIs:

  • Authentication & Authorization: Use OAuth 2.0, JWTs, or API keys depending on risk profile. Apply least-privilege principles to tokens and scopes.
  • Transport Security: Enforce TLS for all traffic and HSTS where applicable.
  • Rate Limiting & Throttling: Protect against abuse and ensure fair usage. Return clear retry-after headers to guide clients.
  • Observability: Emit structured logs, request IDs, and metrics (latency, error rates) and hook them into dashboards and alerting systems.
  • Schema Validation: Validate payloads at the boundary to prevent invalid data from propagating into downstream services.

Scaling often combines stateless application design, caching (CDNs or reverse proxies), and horizontal autoscaling behind load balancers. For APIs used by data-hungry AI agents, consider async patterns (webhooks, message queues) to decouple long-running tasks from synchronous request flows.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQs

What distinguishes REST from other API styles like GraphQL?

REST emphasizes resources and uses HTTP verbs and status codes. GraphQL exposes a flexible query language letting clients request only needed fields. REST is often simpler to cache and monitor, while GraphQL can reduce over-fetching for complex nested data. Choose based on client needs, caching, and complexity.

How should I version a REST API without breaking clients?

Common strategies include URI versioning (/v1/) and header-based versioning. Maintain backward compatibility whenever possible, provide deprecation notices, and publish migration guides. Semantic versioning of your API contract helps client teams plan upgrades.

What are practical steps to secure a public REST API?

Require TLS, use strong authentication (OAuth 2.0 or signed tokens), validate inputs, enforce rate limits, and monitor anomalous traffic. Regularly audit access controls and rotate secrets. Security posture should be part of the API lifecycle.

How can REST APIs support AI-driven workflows?

APIs can supply training data, feature stores, and live inference endpoints. Design predictable schemas, low-latency endpoints, and asynchronous jobs for heavy computations. Tooling and observability help detect data drift, which is critical for reliable AI systems. Platforms like Token Metrics illustrate how API-led data can support model-informed insights.

When should I use synchronous vs asynchronous API patterns?

Use synchronous APIs for short, fast operations with immediate results. For long-running tasks (batch processing, complex model inference), use asynchronous patterns: accept a request, return a job ID, and provide status endpoints or webhooks to report completion.

Disclaimer

This article is educational and technical in nature. It does not constitute investment, legal, or professional advice. Evaluate tools and architectures against your requirements and risks before deployment.

Research

Practical Guide to Building Robust REST APIs

Token Metrics Team
5
MIN

REST APIs power much of the web and modern integrations—from mobile apps to AI agents that consume structured data. Understanding the principles, common pitfalls, and operational practices that make a REST API reliable and maintainable helps teams move faster while reducing friction when integrating services.

What Is a REST API and Why It Matters

Representational State Transfer (REST) is an architectural style for networked applications. A REST API exposes resources (users, accounts, prices, etc.) via predictable HTTP endpoints and methods (GET, POST, PUT, DELETE). Its simplicity, cacheability, and wide tooling support make REST a go-to pattern for many back-end services and third-party integrations.

Key behavioral expectations include statelessness (each request contains the information needed to process it), use of standard HTTP status codes, and a resource-oriented URI design. These conventions improve developer experience and enable robust monitoring and error handling across distributed systems.

Core Design Principles and Endpoint Modeling

Designing a clear resource model at the outset avoids messy ad-hoc expansions later. Consider these guidelines:

  • Use nouns for resources: /users/123/orders, not /getUserOrder?id=123.
  • Support filtering and pagination: query parameters like ?limit=50&cursor=... prevent heavy payloads and improve UX.
  • Version with intent: /v1/ or header-based versioning can be used. Document breaking changes and provide migration paths.
  • Return consistent error shapes: include machine-readable codes, human messages, and optionally documentation links.

Model relationships thoughtfully: prefer nested resources for clarity (e.g., /projects/42/tasks) but avoid excessive nesting depth. A well-documented schema contract reduces integration errors and accelerates client development.

Authentication, Authorization & Security Practices

Security for REST APIs is multi-layered. Common patterns:

  • Token-based auth: OAuth 2.0 bearer tokens or API keys for service-to-service calls.
  • Scopes and RBAC: scope tokens narrowly to minimize blast radius; implement role-based access control for complex domains.
  • Transport security: always require TLS (HTTPS) and enforce secure headers (HSTS, CSP where relevant).
  • Validate inputs: server-side validation and strict schema checks prevent injection and logic errors.

Also consider rate limiting, token expiry, and key rotation policies. For APIs that surface sensitive data, adopt least-privilege principles and audit logging so access patterns can be reviewed.

Performance, Caching & Reliability

Latency and scalability are often where APIs meet their limits. Practical levers include:

  • HTTP caching: use ETags, Cache-Control, and conditional requests to reduce payloads and server load.
  • Pagination and streaming: avoid returning entire datasets; prefer cursors or chunked responses for large collections.
  • CDN and edge caching: cache public or semi-static responses at the edge to reduce origin traffic.
  • Graceful degradation and circuit breakers: fallback behaviors for downstream failures keep core features available.

Instrument your API with observability: structured logs, distributed traces, and metrics (latency, error rates, throughput). These signals enable data-driven tuning and prioritized fixes.

Testing, Tooling & Developer Experience

Quality APIs are well-tested and easy to adopt. Include:

  • Contract tests: verify server responses meet the documented schema to prevent regressions.
  • Integration and end-to-end tests: test authentication flows, error handling, and rate-limit behaviors.
  • Interactive docs and SDKs: OpenAPI/Swagger specs, Postman collections, and generated client libraries lower friction for integrators.
  • Mock servers: let front-end and AI agent teams iterate without waiting on back-end deployments.

Automate CI checks that validate linting, schema changes, and security scanning to maintain long-term health.

REST APIs for Crypto Data and AI Agents

When REST APIs expose market data, on-chain metrics, or signal feeds for analytics and AI agents, additional considerations apply. Data freshness, deterministic timestamps, provenance metadata, and predictable rate limits matter for reproducible analytics. Design APIs so consumers can:

  • Request time-series data with explicit timezones and sampling resolutions.
  • Retrieve provenance (source, block number, or snapshot id) to allow historical reconstruction.
  • Subscribe to webhooks or use polling efficiently to keep agents synchronized without exceeding quotas.

AI-driven workflows often combine multiple endpoints; consistent schemas and clear quotas simplify orchestration and reduce operational surprises. For example, Token Metrics demonstrates how structured crypto insights can be surfaced via APIs to support research and model inputs for agents.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

Frequently Asked Questions

What is the difference between REST and RESTful?

"REST" refers to the architectural constraints defined by Roy Fielding. "RESTful" is an informal adjective describing APIs that follow REST principles—though implementations vary in how strictly they adhere to the constraints.

How should I version a REST API?

Use semantic intent when versioning. URL-based versions (e.g., /v1/) are explicit, while header-based or content negotiation approaches avoid URL churn. Regardless, document deprecation timelines and provide backward-compatible pathways.

When should I use REST versus GraphQL?

REST is simple and cache-friendly for resource-centric models. GraphQL excels when clients need flexible queries across nested relationships. Consider client requirements, caching strategy, and operational complexity when choosing.

How do I handle rate limiting and quotas?

Expose limit headers, return standard status codes (e.g., 429), and provide retry-after guidance. Offer tiered quotas and clear documentation so integrators can design backoffs and fallback strategies.

What tools help document and test REST APIs?

OpenAPI (Swagger) for specs, Postman for interactive exploration, Pact for contract testing, and CI-integrated schema validators are common choices. Combine these with monitoring and API gateways for observability and enforcement.

Disclaimer

This article is for educational and technical reference only. It is not financial, legal, or investment advice. Always evaluate tools and services against your own technical requirements and compliance obligations before integrating them into production systems.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products