Research

Non-Fungible Token (NFT): What It Means and How It Works?

Learn more about an NFT, or non-fungible token, and how it works.
Token Metrics Team
12 minutes
MIN

The most expensive NFT sale to date was Beeple's Everydays: The First 5000 Days, which sold for $69.3 million. This highlights the growing interest in NFTs and the potential for them to be used as a vehicle for sharing virtually any form of media using the blockchain.

But what is an NFT? Let's find out.

What is an NFT?

NFTs, or non-fungible tokens, are unique digital assets with blockchain-managed ownership. They are stored on a blockchain and cannot be replicated or destroyed, making them resistant to tampering. NFTs can represent a wide range of items, including game items, digital art, collectibles, event tickets, and even ownership records for physical assets.

Unlike traditional cryptocurrencies, which are interchangeable and can be easily replicated, NFTs are non-fungible, meaning they have unique qualities that make them one-of-a-kind. This is why NFTs have gained popularity in the art world, where they can be used to verify the authenticity of a digital artwork and ensure that it cannot be copied or stolen.

How Can We Ensure Unique Authenticity?

When someone purchases an NFT, they not only receive the artwork itself, but also a digital receipt that proves that the piece is original, unique, and authentic. This receipt is stored on the blockchain and can be easily accessed and verified by anyone who wants to confirm the ownership and authenticity of the NFT.

While it is technically possible for someone to take a screenshot of an NFT and claim that they own it, this does not give them legal ownership of the artwork. Just like taking a picture of the Mona Lisa at the Louvre does not mean that you own the painting, taking a screenshot of an NFT does not give you ownership of the artwork.

To legally own an NFT, you must purchase it using cryptocurrency and store it in a virtual showcase. This allows you to own and display your artwork in a way that is secure and verifiable, and it ensures that you are the legal owner of the NFT.

NFT Basics You Need To Know

Non-fungible tokens (NFTs) are unique digital files that are stored on a blockchain. A blockchain is a decentralized, public digital ledger that records every transaction that takes place on the decentralized web. This means that the entire history of an NFT, including its creator, properties, transactions, and smart contracts, is backed by a powerful blockchain.

NFTs are different from fungible tokens, such as Bitcoin or Ethereum, which are interchangeable and store value. In contrast, NFTs store data on the blockchain, making them unique and non-replicable.

Important Traits Of NFTs

Some key characteristics of NFTs include:

  • Digital ownership: NFTs are owned and controlled by the individuals who hold them in their digital wallets.
  • Permanent: The data associated with an NFT is permanently stored within the token itself. This can include images, messages, signatures, or any other data.
  • Permission-less: NFTs can be built on a permission-less blockchain, such as Ethereum, meaning that anyone can create and use them.
  • Programmable: Because an NFT is just a piece of code on a blockchain, it can be programmed to have various attributes. For example, an NFT artwork might be programmed to pay the artist royalties on every secondary sale of that artwork.
  • Unique: The uniqueness of an NFT can be verified on the blockchain, ensuring that it is one-of-a-kind and cannot be replicated.

How to Own One? 

To create an NFT, there are several steps that you can follow:

  1. Get your media ready: NFTs support a variety of file types, such as MP3 audio, JPG and PNG images, and 3D files like GLB.
  2. Set up a non-custodial wallet: This will allow you to securely store the cryptocurrency that you will use to buy, sell, and create NFTs. Wallets are also necessary for signing in and creating accounts on NFT marketplaces.
  3. Buy Ethereum or other fungible tokens: You will need to purchase cryptocurrency to cover the cost of minting your NFT.
  4. Connect your wallet to an NFT marketplace: Popular options include Rarible and OpenSea. Connect your wallet by tapping the "Connect" button in the top right corner of the screen. This will create your account and allow you to start creating, minting, and selling your NFTs.
  5. Upload your file and describe your asset: Once you have connected your wallet, you can upload your file to the marketplace and provide a description of your asset. Decide if you want to create a standalone piece or multiple copies of the same NFT.
  6. Mint your NFT: The minting process requires Ethereum for transaction approvals. Once complete, your digital artwork will be ready to be traded and purchased on the marketplace.

Once you have created your NFT, there are several things that you can do with it:

  • Buy and sell it on a marketplace
  • Trade or gift it to others
  • Use it in apps or games
  • Showcase your public NFT inventory on a platform or social media.

The Secondary Markets for NFTs

NFT minting platforms enable creators to create non-fungible tokens (NFTs) to retain more control over their creative output. These NFTs can be sold on the following secondary marketplaces:

  • OpenSea: The first and largest marketplace for NFTs, OpenSea is committed to using open protocols like Ethereum and interoperable standards like ERC-721 and ERC-1155 to enable new digital economies. The platform allows consumers to trade items freely, creators to launch new digital works, and developers to build marketplaces for their digital items. It recently launched the beta version of its Solana-based NFT marketplace.
  • Coinbase NFT: Coinbase recently opened its NFT marketplace to the public in beta. The marketplace acts as a social media platform where users can buy, sell, and interact with NFTs. It aims to make minting, purchasing, showcasing, and discovering NFTs easier.
  • Solanart: Solanart is the first and largest fully-fledged NFT marketplace on Solana. Users can easily access digital collectibles and explore, buy, and sell NFTs that run on the Solana blockchain.
  • Rarible: Rarible is a do-it-yourself NFT marketplace where creators can mint NFTs with ease. The platform's native governance token, "RARI," is used to incentivize users and give the community a voice. However, unrestricted access means that Rarible has become a place for people to mint counterfeit versions of existing NFTs.
  • Nifty Gateway: Owned by the Gemini crypto exchange, Nifty Gateway is a popular NFT marketplace that focuses on user-friendly and viral drops by celebrated artists.
  • SuperRare: SuperRare (SR) is one of Ethereum's first crypto-art NFT marketplaces. Only accepted artists can participate in the platform, where users can discover, buy, and sell tokenized digital art and showcase their collections.

The demand for secondary NFT sales is growing rapidly, leading to increased competition among these marketplaces. Like the early days of Web 1 and 2.0, the emergence of Web 3.0 has created an open market where these platforms must find ways to attract and retain customers.

Some Notable NFT Projects

The thriving NFT market has led to the launch of several high-value projects, including the following companies:

  • Yuga Labs: a blockchain technology company that develops Ethereum-based NFTs and digital collectibles. Yuga's first project, Bored Ape Yacht Club, is one of the most valuable NFT collectibles in the space. The company has also rewarded its holders with free NFTs and other perks. Yuga Labs recently acquired Larva Labs, which brings high-value projects like Cryptopunks and Meebits under the Yuga brand. The company is backed by investors like Coinbase, Samsung, and Mark Cuban.
  • Doodles: a collection of 10,000 Ethereum-based NFTs featuring unique visual traits designed by BurntToast. The Doodles collection includes rare heads, costumes, and colorways, and the universe is ever-expanding. Owners of Doodles have exclusive access to new products, merchandise, and events.
  • Okay Bears: a collection of 10,000 Solana-based NFTs. Ownership of an Okay Bear grants access to a virtuous community that will extend beyond the internet into the real world.

The Future of NFTs

Blockchain technology is known for its ability to represent assets and prove ownership. NFTs take this a step further by enabling people to potentially purchase non-fungible assets like land and gold. The global market cap for gold and real estate is over $300 trillion, so even a small percentage of that being tokenized would greatly increase the total crypto market cap. Tokenized real estate offers ordinary people the opportunity to invest in real estate, which has traditionally been difficult for the average person to participate in.

NFTs also have applications in other industries. For example, Nike recently filed a patent for NFT-enabled sneakers called "CryptoKicks." In 2019, Louis Vuitton announced plans to use NFTs to track the ownership of luxury fashion items. NFTs can also be used to tokenize certifications, degrees, and licenses, as well as sensitive data like medical records. The potential for NFTs to show ownership of any non-fungible commodity, whether real or virtual, is vast.

In conclusion, the use of non-fungible tokens (NFTs) has expanded beyond digital art and collectibles to include a wide range of real and virtual assets. The ability of NFTs to represent and prove ownership offers exciting possibilities for industries such as real estate, fashion, and even healthcare. As the technology and market continue to evolve, the potential applications for NFTs are endless.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Mastering REST APIs: Principles, Design, Practices

Token Metrics Team
5
MIN

REST APIs power most modern web and mobile back ends by providing a uniform, scalable way to exchange data over HTTP. Whether you are building microservices, connecting AI agents, or integrating third‑party feeds, understanding the architectural principles, design patterns, and operational tradeoffs of REST can help you build reliable systems. This article breaks down core concepts, design best practices, security measures, and practical steps to integrate REST APIs with analytics and AI workflows.

Understanding REST API Fundamentals

REST (Representational State Transfer) is an architectural style for distributed systems. It emphasizes stateless interactions, resource-based URIs, and the use of standard HTTP verbs (GET, POST, PUT, DELETE, PATCH). Key constraints include:

  • Statelessness: Each request contains all necessary context, simplifying server design and enabling horizontal scaling.
  • Resource orientation: Resources are identified by URIs and represented in formats such as JSON or XML.
  • Uniform interface: Consistent use of HTTP methods and status codes improves predictability and interoperability.

When designing APIs, aim for clear resource models, intuitive endpoint naming, and consistent payload shapes. Consider versioning strategies (URL vs header) from day one to avoid breaking clients as your API evolves.

Design Patterns and Best Practices for REST APIs

Good API design balances usability, performance, and maintainability. Adopt these common patterns:

  • Resource naming: Use plural nouns (/users, /orders) and hierarchical paths to express relationships.
  • HTTP semantics: Map create/read/update/delete to POST/GET/PUT/DELETE and use PATCH for partial updates.
  • Pagination and filtering: Return large collections with pagination (cursor or offset) and provide filters and sort parameters.
  • Hypermedia (HATEOAS): Include links to related resources when appropriate to make APIs self-descriptive.
  • Error handling: Use structured error responses with machine-readable codes and human-friendly messages.

Document endpoints with examples and schemas (OpenAPI/Swagger). Automated documentation and SDK generation reduce integration friction and lower client-side errors.

Securing and Scaling REST APIs

Security and operational resilience are core concerns for production APIs. Consider the following layers:

  • Authentication & authorization: Use OAuth2, JWT, or API keys depending on threat model. Keep tokens short-lived and enforce least privilege.
  • Input validation: Validate all incoming data to prevent injection and logic vulnerabilities.
  • Rate limiting & throttling: Protect backends from abuse and noisy neighbors by implementing quotas and backoff signals.
  • Transport security: Enforce TLS (HTTPS) and configure secure ciphers and headers.
  • Observability: Expose metrics, structured logs, and distributed traces to troubleshoot latency and failure modes.

For scale, design for statelessness so instances are replaceable, use caching (HTTP cache headers, CDN, or edge caches), and partition data to reduce contention. Use circuit breakers and graceful degradation to maintain partial service during downstream failures.

Integrating REST APIs with AI, Analytics, and Crypto Workflows

REST APIs are frequently used to feed AI models, aggregate on‑chain data, and connect analytics pipelines. Best practices for these integrations include:

  • Schema contracts: Define stable, versioned schemas for model inputs and analytics outputs to avoid silent breakages.
  • Batch vs streaming: Choose between batch endpoints for bulk processing and streaming/webhook patterns for real‑time events.
  • Data provenance: Attach metadata and timestamps so downstream models can account for data freshness and lineage.
  • Testing: Use contract tests and synthetic data generators to validate integrations before deploying changes.

To accelerate research workflows and reduce time-to-insight, many teams combine REST APIs with AI-driven analytics. For example, external platforms can provide curated market and on‑chain data through RESTful endpoints that feed model training or signal generation. One such option for consolidated crypto data access is Token Metrics, which can be used as part of an analysis pipeline to augment internal data sources.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common REST API Questions

What is the difference between REST and RESTful?

REST is an architectural style defined by constraints; "RESTful" describes services that adhere to those principles. In practice, many APIs are called RESTful even if they relax some constraints, such as strict HATEOAS.

When should I version an API and how?

Version early when breaking changes are likely. Common approaches are path versioning (/v1/) or header-based versioning. Path versioning is simpler for clients, while headers keep URLs cleaner. Maintain compatibility guarantees in your documentation.

How do I choose between REST and GraphQL?

REST is straightforward for resource-centric designs and benefits from HTTP caching and simple tooling. GraphQL excels when clients need flexible queries and to reduce over-fetching. Choose based on client needs, caching requirements, and team expertise.

What are practical rate limiting strategies?

Use token bucket or fixed-window counters, and apply limits per API key, IP, or user. Provide rate limit headers and meaningful status codes (429 Too Many Requests) to help clients implement backoff and retry strategies.

How can I test and monitor a REST API effectively?

Combine unit and integration tests with contract tests (OpenAPI-driven). For monitoring, collect metrics (latency, error rates), traces, and structured logs. Synthetic checks and alerting on SLA breaches help detect degradations early.

What is the best way to document an API?

Use OpenAPI/Swagger to provide machine-readable schemas and auto-generate interactive docs. Include examples, authentication instructions, and clear error code tables. Keep docs in version control alongside code.

Disclaimer

This article is educational and informational only. It does not constitute financial, investment, legal, or professional advice. Evaluate tools and services independently and consult appropriate professionals for specific needs.

Research

Mastering REST APIs: Principles, Design, and Best Practices

Token Metrics Team
5
MIN

REST APIs power much of the modern web, mobile apps, and integrations between services. Whether you are building a backend for a product, connecting to external data sources, or composing AI agents that call external endpoints, understanding REST API fundamentals helps you design reliable, maintainable, and performant systems.

What is a REST API and why it matters

Representational State Transfer (REST) is an architectural style that uses simple HTTP verbs to operate on resources identified by URLs. A REST API exposes these resources over HTTP so clients can create, read, update, and delete state in a predictable way. Key benefits include:

  • Stateless interactions that simplify scaling and load balancing.
  • Uniform interface using standard HTTP verbs (GET, POST, PUT/PATCH, DELETE).
  • Human-readable endpoints and predictable behavior for developers and tools.

REST is not a strict protocol; it is a set of constraints that make APIs easier to consume and maintain. Understanding these constraints enables clearer contracts between services and smoother integration with libraries, SDKs, and API gateways.

Core principles and common HTTP methods

Designing a RESTful API starts with resources and consistent use of HTTP semantics. Typical patterns include:

  • Resource-oriented URLs: /users/123/orders/456 rather than RPC-style method names.
  • HTTP methods: GET for reads, POST for creation, PUT/PATCH for updates, DELETE for deletion.
  • Status codes: 200 OK, 201 Created, 204 No Content, 400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found, 429 Too Many Requests, 500 Server Error.
  • Content negotiation: Use Accept and Content-Type headers (application/json, application/xml) to support clients.

Use idempotency for safety: GET, PUT, and DELETE should be safe to retry without causing unintended side effects. POST is commonly non-idempotent unless an idempotency key is provided.

Design patterns: pagination, filtering, and versioning

As APIs grow, practical patterns help keep them efficient and stable:

  • Pagination: Offer cursor-based or offset-based pagination for collections. Cursor pagination generally performs better at scale.
  • Filtering and sorting: Support query parameters (e.g., ?status=active&sort=-created_at) and document allowed fields.
  • Versioning: Avoid breaking changes by putting versions in the URL (/v1/) or in headers. Maintain clear deprecation policies and migration guides.
  • Hypermedia (HATEOAS): Optionally include links to related resources to help clients discover available actions.

Security, performance, and operational best practices

Security and reliability are essential for production APIs. Consider these practices:

  • Authentication & authorization: Prefer OAuth2, JWTs, or API keys depending on your use case. Use scopes and least-privilege access.
  • Transport security: Enforce TLS for all endpoints and disable deprecated TLS ciphers.
  • Rate limiting and quotas: Protect your backend and provide clear error responses (429) with retry headers.
  • Caching: Use HTTP caching headers (Cache-Control, ETag) and CDN fronting for read-heavy endpoints.
  • Monitoring and observability: Emit structured logs, metrics, and distributed traces so you can diagnose latency, errors, and bottlenecks.

These controls reduce downtime and make integration predictable for client teams and third-party developers.

Testing, documentation, and developer experience

Good testing and clear docs accelerate adoption and reduce bugs:

  • Automated tests: Unit test controllers and routes, and use integration tests against a staging environment or simulated backend.
  • Contract testing: Tools like OpenAPI/Swagger and schema validation ensure clients and servers agree on payloads and types.
  • Interactive docs and SDKs: Provide OpenAPI specs, example curl commands, and autogenerated client libraries for common languages.
  • Postman and CI: Use Postman collections or similar for exploratory testing and include API checks in CI pipelines.

These measures improve developer productivity and reduce the risk of downstream failures when APIs evolve.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is the difference between REST and RESTful?

REST is the architectural style; RESTful typically describes APIs that follow REST constraints such as statelessness, resource orientation, and use of HTTP verbs. In practice the terms are often used interchangeably.

When should I use PUT vs PATCH?

PUT generally replaces a full resource and is idempotent; PATCH applies partial changes and may not be idempotent unless designed to be. Choose based on whether clients send full or partial resource representations.

How do I choose between URL versioning and header versioning?

URL versioning (/v1/) is simple and visible to clients, while header versioning is cleaner from a URL standpoint but harder for users to discover. Pick a strategy with a clear migration and deprecation plan.

What are common causes of REST API performance issues?

Typical causes include unoptimized database queries, chatty endpoints that require many requests, lack of caching, and large payloads. Use profiling, caching, and pagination to mitigate these issues.

How can REST APIs support AI agents?

AI agents often orchestrate multiple data sources and services via REST APIs. Well-documented, authenticated, and idempotent endpoints make it safer for agents to request data, trigger workflows, and integrate model outputs into applications.

What tools help with API design and documentation?

OpenAPI/Swagger, Postman, Redoc, and API gateways (e.g., Kong, Apigee) are common. They help standardize schemas, run automated tests, and generate SDKs for multiple languages.

Disclaimer

This article is educational and informational only. It does not constitute professional advice. Evaluate technical choices and platforms based on your project requirements and security needs.

Research

Mastering REST APIs: Design, Security, and Performance

Token Metrics Team
4
MIN

REST APIs are the connective tissue of modern software: from mobile apps to cloud services, they standardize how systems share data. This guide breaks down practical design patterns, security considerations, performance tuning, and testing strategies to help engineers build reliable, maintainable RESTful services.

API Design Principles

Good REST API design balances consistency, discoverability, and simplicity. Start with clear resource modeling — treat nouns as endpoints (e.g., /users, /orders) and use HTTP methods semantically: GET for retrieval, POST for creation, PUT/PATCH for updates, and DELETE for removals. Design predictable URIs, favor plural resource names, and use nested resources sparingly when relationships matter.

Other patterns to consider:

  • Use query parameters for filtering, sorting, and pagination (e.g., ?limit=50&offset=100&sort=-created_at).
  • Return consistent response shapes and error formats. Standardize on JSON with a clear schema and status codes.
  • Document your API with OpenAPI (formerly Swagger) to enable auto-generated docs, client SDKs, and validation.

Authentication & Security

Security is foundational. Choose an authentication model that matches your use case: token-based (OAuth 2.0, JWT) is common for user-facing APIs, while mutual TLS or API keys may suit machine-to-machine communication. Regardless of choice, follow these practices:

  • Enforce HTTPS everywhere to protect data-in-transit.
  • Implement short-lived tokens plus refresh mechanisms to reduce exposure from leaked credentials.
  • Validate and sanitize all inputs to prevent injection attacks; use rate limiting and quotas to mitigate abuse.
  • Log access events and monitor for anomalous patterns; retain minimal PII and follow data privacy standards.

Designate clear error codes and messages that avoid leaking sensitive information. Security reviews and threat modeling are essential parts of API lifecycle management.

Performance, Scalability & Reliability

Performance and scalability decisions often shape architecture. Key levers include caching, pagination, and efficient data modeling:

  • Use HTTP caching headers (ETag, Cache-Control) to reduce unnecessary payloads.
  • Offload heavy queries with background processing and asynchronous endpoints when appropriate.
  • Implement pagination for endpoints that return large collections; prefer cursor-based pagination for stable ordering.
  • Apply rate limiting and backpressure strategies at the edge to protect downstream systems.

Leverage observability: instrument APIs with metrics (latency, error rates, throughput), distributed tracing, and structured logs. These signals help locate bottlenecks and inform capacity planning. In distributed deployments, design for graceful degradation and retries with exponential backoff to improve resilience.

Testing, Versioning, and Tooling

Robust testing and tooling accelerate safe iteration. Adopt automated tests at multiple levels: unit tests for handlers, integration tests against staging environments, and contract tests to ensure backward compatibility. Use API mocking to validate client behavior early in development.

Versioning strategy matters: embed version in the URL (e.g., /v1/users) or the Accept header. Aim for backwards-compatible changes when possible; when breaking changes are unavoidable, document migration paths.

AI-enhanced tools can assist with schema discovery, test generation, and traffic analysis. For example, Token Metrics and similar platforms illustrate how analytics and automated signals can surface usage patterns and anomalies in request volumes — useful inputs when tuning rate limits or prioritizing endpoints for optimization.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is a REST API?

A REST API (Representational State Transfer) is an architectural style for networked applications that uses stateless HTTP requests to manipulate resources represented by URLs and standard methods.

FAQ: How do I secure my REST API?

Secure your API by enforcing HTTPS, using robust authentication (OAuth 2.0, short-lived tokens), validating inputs, applying rate limits, and monitoring access logs for anomalies.

FAQ: When should I use POST vs PUT vs PATCH?

Use POST to create resources, PUT to replace a resource entirely, and PATCH to apply partial updates. Choose semantics that align with client expectations and document them clearly.

FAQ: How do I handle versioning?

Common approaches include URL versioning (/v1/...), header versioning (Accept header), or content negotiation. Prefer backward-compatible changes; when breaking changes are required, communicate deprecation timelines.

FAQ: What are best practices for error handling?

Return appropriate HTTP status codes, provide consistent error bodies with machine-readable codes and human-readable messages, and avoid exposing sensitive internals. Include correlation IDs to aid debugging.

FAQ: How can I test and monitor a production REST API?

Use synthetic monitoring, real-user metrics, health checks, distributed tracing, and automated alerting. Combine unit/integration tests with contract tests and post-deployment smoke checks.

Disclaimer

This article is educational and technical in nature. It does not provide financial, legal, or investment advice. Implementation choices depend on your specific context; consult qualified professionals for regulatory or security-sensitive decisions.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products