Research

What is Proof of Work Versus Proof of Stake: The Complete 2025 Guide to Blockchain Consensus

Discover the key differences between Proof of Work and Proof of Stake. Understand their pros and cons to make informed decisions. Read the guide now!
Talha Ahmad
5 min
MIN

The blockchain industry has seen a profound evolution in how decentralized systems secure transactions and maintain consensus. As we move through 2025, understanding what is proof of work versus proof of stake remains essential for anyone involved in the cryptocurrency industry.

At first glance, proof of work and proof of stake may appear similar as consensus mechanisms, but their underlying mechanisms and implications differ significantly.

These two consensus mechanisms serve as the backbone of blockchain technology, each with unique benefits, trade offs, and implications for network security, energy usage, and scalability. This comprehensive guide explores the fundamentals of Proof of Work (PoW) and Proof of Stake (PoS), their differences, and their impact on the future of blockchain networks.

Introduction to Blockchain Consensus

Blockchain consensus mechanisms are the foundation of decentralized systems, ensuring that all participants in a network agree on the validity of transactions without relying on a central authority. These mechanisms are responsible for validating new transactions, adding them to the blockchain, and creating new tokens in a secure and transparent manner. By eliminating the need for a single controlling entity, consensus mechanisms like proof of work and proof of stake enable trustless collaboration and robust network security.

Each consensus mechanism takes a different approach to achieving agreement and maintaining the integrity of the blockchain. Proof of work relies on energy-intensive computational work and proof, while proof of stake leverages financial incentives and staking to secure the network. Both systems are designed to prevent fraud, double-spending, and other malicious activities, ensuring that only valid transactions are recorded. As we explore these mechanisms in detail, we’ll examine their impact on energy consumption, decentralization, and the overall security of blockchain networks.

Understanding Proof of Work: The Pioneer Consensus Mechanism

Proof of Work is the original consensus mechanism that launched with the first cryptocurrency, Bitcoin, in 2009. At its core, PoW relies on miners using computational power to solve complex puzzles—specifically cryptographic puzzles—through a process often described as work and proof. Miners compete by expending electricity and processing power to find a valid hash that meets the network’s difficulty criteria. The first miner to solve the puzzle earns the right to add the next block to the blockchain and receive block rewards alongside transaction fees.

This mining process requires specialized hardware such as Application-Specific Integrated Circuits (ASICs) or powerful graphics processing units (GPUs), which perform trillions of calculations per second. The network automatically adjusts the puzzle difficulty to maintain a steady rate of adding blocks, ensuring new blocks are created approximately every 10 minutes on the Bitcoin network.

Key Characteristics of Proof of Work:

  • Security Through Energy and Computation Power: PoW’s security model is based on the enormous amount of computational work and electricity required to attack the network. To successfully manipulate the blockchain, a malicious actor would need to control more than 50% of the total mining power, which is prohibitively expensive and resource-intensive. This makes the Bitcoin network, for example, extremely resilient to attacks and bad blocks.
  • Decentralized System: In theory, anyone with the necessary hardware and electricity can participate in mining, promoting decentralization. As more miners join the network, the overall security and decentralization of the proof of work system are enhanced, but this also leads to increased energy consumption and potential centralization among large mining entities. However, in practice, mining pools and industrial-scale operations have concentrated significant computational power, raising concerns about central authority in some cases.
  • High Energy Consumption: PoW’s reliance on computational power results in significant energy usage and power consumption. Critics highlight the environmental impact due to electricity consumption, sometimes comparable to that of small countries. Nevertheless, proponents argue that mining incentivizes the use of renewable energy and can utilize off-peak or otherwise wasted electricity.
  • Proven Track Record: PoW’s robustness is demonstrated by Bitcoin’s uninterrupted operation for over a decade without a successful attack, making it the most battle-tested consensus mechanism in the cryptocurrency industry.

Bitcoin’s Consensus Mechanism: The Gold Standard in Practice

Bitcoin, the first cryptocurrency, set the standard for blockchain consensus with its innovative use of proof of work. In this system, miners harness significant computing power to compete for the opportunity to add new blocks to the blockchain. Each miner gathers pending transactions into a block and works to solve a cryptographic puzzle, which involves finding a specific nonce that satisfies the network’s difficulty requirements. This process demands repeated trial and error, consuming substantial energy and processing resources.

Once a miner discovers a valid solution, the new block is broadcast to the network, where other nodes verify its accuracy before adding it to their own copy of the blockchain. The successful miner is rewarded with newly minted bitcoins and transaction fees, incentivizing continued participation and network security. Since its launch in 2009, Bitcoin’s proof of work consensus mechanism has proven remarkably resilient, maintaining a secure and decentralized network. However, the high energy consumption required to solve these cryptographic puzzles has sparked ongoing debate about the environmental impact of this approach.

Understanding Proof of Stake: The Energy-Efficient Alternative

Proof of Stake emerged as a more energy efficient alternative to PoW, addressing the concerns related to energy cost and environmental impact. Instead of miners competing with computational power, PoS relies on validators who are selected as the 'block creator' to add new blocks based on the amount of cryptocurrency they hold and lock up as a stake. This stake acts as collateral, incentivizing honest behavior because validators risk losing their stake if they attempt to validate fraudulent transactions, behave maliciously, or go offline.

Validators are chosen through a winner based process that combines factors such as stake size, randomization, and sometimes the age of coins. Once selected, a validator proposes a new block, which must be accepted by other validators before being finalized. A threshold number of validator attestations is required before a new block is added to the blockchain. Validators are responsible for validating transactions and verifying transactions before adding them to the blockchain, including new transactions. Stake transactions involve validators locking up their tokens to participate in validating transactions and earn rewards.

Essential Features of Proof of Stake:

  • Drastic Reduction in Energy Consumption: Compared to PoW, PoS systems require dramatically less electricity because they do not rely on solving energy-intensive puzzles. Ethereum’s switch from PoW to PoS resulted in a 99.992% reduction in energy usage, setting a benchmark for sustainable blockchain technology.
  • Lower Hardware Requirements: Validators do not need expensive mining rigs or massive computational power. Instead, anyone holding the predetermined amount of native cryptocurrency can participate, potentially enhancing decentralization and accessibility.
  • Economic Security Through Stake Proof: Validators have a financial incentive to act honestly because misbehavior can lead to losing their staked tokens through penalties known as slashing. This aligns the interests of validators with the network’s health and security.
  • Improved Scalability and Performance: PoS networks typically support faster transaction processing and higher throughput, enabling more efficient blockchain transactions and supporting complex features like smart contracts.

Work and Proof in Blockchain Consensus

At the heart of blockchain technology are consensus mechanisms that guarantee the security and reliability of decentralized networks. Proof of work and proof of stake represent two distinct approaches to achieving consensus. In proof of work, network participants—known as miners—use computational power to solve complex puzzles, a process that requires significant energy and resources. This work and proof model ensures that adding new blocks to the blockchain is both challenging and costly, deterring malicious actors.

In contrast, proof of stake introduces a more energy-efficient system by selecting validators based on the amount of cryptocurrency they are willing to stake as collateral. Instead of relying on raw computational power, validators in a stake system are chosen to validate transactions and create new blocks according to their staked amount, reducing the need for excessive energy consumption. The fundamental trade-off between these consensus mechanisms lies in their approach to network security: proof of work emphasizes computational effort, while proof of stake leverages financial incentives and honest behavior. Understanding these differences is crucial for evaluating which system best fits the needs of various blockchain networks and applications.

The Great Migration: Ethereum's Historic Transition

A landmark event in the PoW vs PoS debate was Ethereum's switch from Proof of Work to Proof of Stake in September 2022, known as "The Merge." This transition transformed the Ethereum network, the second-largest blockchain platform, by eliminating its energy-intensive mining operations and adopting a PoS consensus mechanism.

Ethereum’s move to PoS not only resulted in a drastic reduction in energy consumption but also unlocked new possibilities such as liquid staking derivatives. These innovations allow users to stake their ETH while maintaining liquidity, enabling participation in DeFi applications without sacrificing staking rewards.

The transition has inspired other blockchain projects to explore PoS or hybrid consensus models, combining the security strengths of PoW with the energy efficiency and scalability of PoS. Ethereum’s successful upgrade stands as a powerful example of how major networks can evolve their consensus mechanisms to meet future demands.

Comparative Analysis: Security, Decentralization, and Performance

When comparing proof of work versus proof of stake, several critical factors emerge:

  • Security Models: PoW’s security is rooted in the economic and physical costs of computational work, making attacks costly and easily detectable. Proof of work's security model has not been successfully attacked since its inception, demonstrating its reliability and resistance to manipulation. PoS secures the network economically through validators’ staked assets, where dishonest behavior results in financial penalties. Both models have proven effective but rely on different mechanisms to incentivize honest behavior.
  • Environmental Impact: PoW networks consume more energy due to mining operations. Proof of work's high energy consumption is a direct result of its security model, which requires significant computational resources. PoS systems are markedly more energy efficient, appealing to sustainability-conscious users and regulators.
  • Economic Incentives and Costs: PoW miners face ongoing expenses for hardware and electricity to maintain mining operations. PoS validators earn rewards by locking up their stake and risk losing it if they act maliciously. These differences create distinct economic dynamics and barriers to entry.
  • Decentralization Considerations: While PoW mining pools have centralized some hash power, PoS systems can also concentrate power if large amounts of stake accumulate in a single entity or staking pool. Both systems must carefully balance decentralization with efficiency.
  • Performance and Scalability: PoS generally offers faster transaction times and better scalability, supporting higher throughput and more complex blockchain applications than many PoW networks.

The Impact of Energy Consumption and Environmental Considerations

Energy consumption has become a defining issue in the debate over blockchain consensus mechanisms. Proof of work networks, such as Bitcoin, are known for their high energy requirements, with the total power consumption of the network often surpassing that of small countries. This significant energy usage is a direct result of the computational power needed to solve cryptographic puzzles and secure the network, leading to concerns about greenhouse gas emissions and environmental sustainability.

In response, proof of stake mechanisms have been developed to offer a more energy-efficient alternative. By eliminating the need for energy-intensive mining, proof of stake drastically reduces the carbon footprint of blockchain technology. The recent transition of the Ethereum network from proof of work to proof of stake serves as a prime example, resulting in a dramatic reduction in energy consumption and setting a new standard for sustainable blockchain development. As the cryptocurrency industry continues to grow, environmental considerations are becoming increasingly important, driving innovation in consensus mechanisms that prioritize both security and sustainability.

More Energy-Intensive Consensus Mechanisms

While proof of work remains the most prominent example of an energy-intensive consensus mechanism, it is not the only one that relies on substantial computational power. Other mechanisms, such as proof of capacity and proof of space, also require large amounts of energy to secure the network and validate transactions. These systems depend on participants dedicating significant storage or processing resources, further contributing to overall energy consumption.

As the demand for more sustainable blockchain solutions increases, the industry is actively exploring alternative consensus mechanisms that can deliver robust security without excessive energy costs. Hybrid models that combine elements of proof of work and proof of stake are emerging as promising options, aiming to balance the trade-offs between security, decentralization, and energy efficiency. The future of blockchain consensus will likely be shaped by ongoing research and development, as networks seek to create systems that are both secure and environmentally responsible, ensuring the long-term viability of decentralized technologies.

Current Market Landscape and Adoption Trends

In 2025, the cryptocurrency ecosystem shows a clear trend toward adopting PoS or hybrid consensus mechanisms among new blockchain projects. The appeal of reduced energy cost, scalability, and lower hardware requirements drives this shift. Networks like Cardano, Solana, and Polkadot utilize PoS or variations thereof, emphasizing energy efficiency and performance.

Conversely, Bitcoin remains steadfast in its commitment to PoW, with its community valuing the security and decentralization benefits despite the environmental concerns. This philosophical divide between PoW and PoS communities continues to shape investment strategies and network development.

Hybrid models that integrate both PoW and PoS elements are gaining attention, aiming to combine the security of computational work systems with the efficiency of stake systems. These innovations reflect ongoing experimentation in the cryptocurrency industry’s quest for optimal consensus solutions.

Professional Tools for Consensus Mechanism Analysis

For investors and traders seeking to navigate the complexities of consensus mechanisms, professional analytics platforms like Token Metrics provide invaluable insights. Token Metrics leverages AI to analyze blockchain networks across multiple dimensions, including network security, validator performance, and staking economics.

The platform offers real-time monitoring of staking yields, validator behavior, and network participation rates, helping users optimize their strategies in PoS systems. For PoW networks, Token Metrics tracks mining difficulty, hash rate distribution, and energy consumption patterns.

Additionally, Token Metrics supports ESG-focused investors by providing detailed analysis of energy consumption across consensus mechanisms, aligning investment decisions with sustainability goals.

By continuously monitoring network updates and consensus changes, Token Metrics empowers users to stay informed about critical developments that impact the security and value of their holdings.

Staking Economics and Reward Mechanisms

The economics of PoS networks introduce new dynamics compared to PoW mining. Validators earn staking rewards based on factors such as the total amount staked, network inflation rates, and transaction activity. Typical annual yields range from 3% to 15%, though these vary widely by network and market conditions.

Participants must consider risks such as slashing penalties for validator misbehavior, lock-up periods during which staked tokens cannot be withdrawn, and potential volatility in the price of the native cryptocurrency.

The rise of liquid staking platforms has revolutionized staking by allowing users to earn rewards while retaining liquidity, enabling more flexible investment strategies that integrate staking with lending, trading, and decentralized finance.

Future Developments and Hybrid Models

The future of consensus mechanisms is marked by ongoing innovation. New protocols like Proof of Succinct Work (PoSW) aim to transform computational work into productive tasks while maintaining security. Delegated Proof of Stake (DPoS) improves governance efficiency by electing a smaller number of validators, enhancing scalability.

Artificial intelligence and machine learning are beginning to influence consensus design, with projects experimenting with AI-driven validator selection and dynamic network parameter adjustments to optimize security and performance.

Hybrid consensus models that blend PoW and PoS features seek to balance energy consumption, security, and decentralization, potentially offering the best of both worlds for future blockchain systems.

Regulatory Considerations and Institutional Adoption

Regulators worldwide are increasingly taking consensus mechanisms into account when shaping policies. PoS networks often receive more favorable treatment due to their lower environmental footprint and distinct economic models.

Tax treatment of staking rewards remains complex and varies by jurisdiction, affecting the net returns for investors and influencing adoption rates.

Institutional interest in PoS networks has surged, with major financial players offering staking services and integrating PoS assets into their portfolios. This institutional adoption enhances liquidity, governance, and legitimacy within the cryptocurrency industry.

Risk Management and Due Diligence

Engaging with either PoW or PoS networks requires careful risk management. PoW participants face challenges like hardware obsolescence, fluctuating electricity costs, and regulatory scrutiny of mining operations. PoS participants must manage risks related to slashing, validator reliability, and token lock-up periods. In particular, validators who produce or accept a bad block—an invalid or malicious block—can be penalized through slashing, which helps maintain network integrity.

Analytics platforms such as Token Metrics provide critical tools for monitoring these risks, offering insights into mining pool concentration, validator performance, and network health.

Diversifying investments across different consensus mechanisms can mitigate risks and capture opportunities arising from the evolving blockchain landscape.

Conclusion: Navigating the Consensus Mechanism Landscape

Understanding what is proof of work versus proof of stake is essential for anyone involved in blockchain technology today. Both consensus mechanisms present unique trade offs in terms of security, energy usage, economic incentives, and technical capabilities.

While Bitcoin’s PoW system remains the gold standard for security and decentralization, Ethereum’s successful transition to PoS exemplifies the future of energy-efficient blockchain networks. Emerging hybrid models and innovative consensus protocols promise to further refine how decentralized systems operate.

For investors, traders, and blockchain enthusiasts, leveraging professional tools like Token Metrics can provide critical insights into how consensus mechanisms affect network performance, security, and investment potential. Staying informed and adaptable in this dynamic environment is key to thriving in the evolving world of blockchain technology.

‍

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Crypto Basics

How to Create a Crypto Wallet: A Complete Beginner’s Guide (2025)

Token Metrics Team
6 min
MIN

As the popularity of cryptocurrencies continues to grow in 2025, more people are seeking safe and secure ways to manage their digital assets. The first step in your crypto journey? Creating a crypto wallet.

In this guide, we’ll explain:

  • What a crypto wallet is
  • Different types of wallets
  • How to create one (step-by-step)
  • Tips for securing your wallet
  • How Token Metrics can help you trade smarter after setup

đŸȘ™ What Is a Crypto Wallet?

A crypto wallet is a digital tool that allows you to store, receive, and send cryptocurrencies like Bitcoin, Ethereum, and thousands of altcoins. Instead of holding physical money, it stores your private and public keys, giving you access to your blockchain assets.

Two Major Types:

  1. Hot Wallets – connected to the internet (ideal for active users)
  2. Cold Wallets – offline and more secure (ideal for long-term storage)

Whether you're buying Bitcoin for the first time or diving into DeFi tokens, you'll need a crypto wallet to safely store and manage your coins.

đŸ”„ Hot Wallets vs. 🧊 Cold Wallets

‍

‍

Hot wallets are easier to set up and use, while cold wallets offer greater protection against hacks and malware.

đŸ› ïž How to Create a Crypto Wallet (Step-by-Step)

Option 1: Creating a Hot Wallet (e.g., MetaMask or Trust Wallet)

Step 1: Download the App or Browser Extension

Step 2: Create a New Wallet

  • Click “Create a Wallet”
  • Set a strong password

Step 3: Backup Your Recovery Phrase

  • Write down the 12 or 24-word seed phrase
  • Store it offline (NOT on your phone or computer)

Step 4: Confirm Your Recovery Phrase

  • MetaMask will ask you to re-enter it to ensure it's saved correctly

Step 5: Wallet is Ready

  • You can now receive, send, and store ETH, ERC-20 tokens, and NFTs

✅ Pro Tip: Connect your wallet to Token Metrics to explore trading signals, moonshots, and AI analytics directly.

Option 2: Creating a Cold Wallet (e.g., Ledger Nano X)

Step 1: Buy a Ledger or Trezor device

  • Always order from the official website to avoid tampered devices

Step 2: Install Wallet Software

  • Download Ledger Live or Trezor Suite

Step 3: Set Up Device and PIN

  • Follow the on-screen instructions
  • Create a secure PIN code

Step 4: Write Down Your Recovery Phrase

  • The device will show a 24-word seed phrase
  • Write it down and store it in a fireproof safe

Step 5: Start Receiving Crypto

  • Use Ledger Live or Trezor Suite to generate wallet addresses
  • Send crypto from exchanges or other wallets

✅ Pro Tip: Use your cold wallet to store moonshots and long-term assets, then analyze performance using Token Metrics Portfolio tools.

đŸ›Ąïž Tips for Securing Your Crypto Wallet

  1. Never share your seed phrase
    Anyone with your seed phrase can steal your funds

  2. Enable Two-Factor Authentication (2FA)
    For added protection on wallet apps and exchange accounts

  3. Use a strong, unique password
    Avoid reusing passwords across multiple accounts

  4. Avoid phishing sites
    Always double-check URLs before connecting your wallet

  5. Keep backups offline
    Use metal seed plates or paper stored in multiple safe locations

🔎 How Token Metrics Supports Your Wallet Journey

While Token Metrics doesn't create wallets, it integrates seamlessly with your Web3 wallets to help you maximize profits and minimize risks.

1. AI-Powered Ratings

Once your wallet is set up, use Token Metrics to find top-rated tokens across risk levels, market caps, and sectors.

2. Moonshots Dashboard

Explore early-stage tokens with massive upside using the Moonshots tab—only available to Premium members.

3. Real-Time Alerts

Set up alerts for price, investor grade, or bullish/bearish signals—and receive them directly to your connected wallet’s contact info.

4. Track Your Portfolio

Monitor wallet performance across tokens with a real-time dashboard powered by on-chain data.

📩 What Can You Store in Your Crypto Wallet?

Different wallets support different blockchains, so always check compatibility before sending assets.

đŸ“Č Best Wallets to Use in 2025

‍

🔄 Wallet Creation FAQs

Q: Is creating a crypto wallet free?
Yes, most wallet apps like MetaMask or Trust Wallet are free.

Q: Can I create multiple wallets?
Absolutely. Many investors use different wallets for different purposes (e.g., trading, staking, savings).

Q: What happens if I lose my recovery phrase?
You lose access to your wallet permanently. Always store it securely.

Q: Do I need a wallet to use Token Metrics?
No, but connecting a wallet enhances your experience by allowing you to monitor portfolios, moonshots, and alerts in real time.

🧠 Final Thoughts

Creating a crypto wallet is your gateway to the decentralized world of digital finance. Whether you’re a seasoned trader or a beginner buying your first token, having a secure wallet is non-negotiable.

By choosing the right wallet (hot or cold), securing your keys, and combining it with powerful tools like Token Metrics, you can build a smart, secure, and profitable crypto journey.

Crypto Basics

How to Store Cryptocurrency Safely in 2025 | Hot vs Cold Wallets

Token Metrics Team
6 min
MIN

Cryptocurrency offers unmatched freedom, but with that freedom comes responsibility—especially when it comes to how to store cryptocurrency securely. Unlike traditional banking, crypto is self-custodied. If you lose access to your wallet, your funds are gone forever.

This guide explains everything you need to know about storing crypto in 2025, including:

  • Why crypto storage matters
  • Types of crypto wallets
  • Hot wallets vs. cold wallets
  • Tips for securing your assets
  • How platforms like Token Metrics can help protect your investment

đŸȘ™ Why Is Storing Cryptocurrency Important?

When you buy crypto—whether it’s Bitcoin, Ethereum, or a promising moonshot altcoin—you receive private keys that give you access to your funds. Anyone with that key can spend your coins.

That’s why safe storage is critical. Without it, your assets are vulnerable to:

  • Hacks and phishing scams
  • Lost devices or forgotten passwords
  • Exchange collapses or rug pulls

You are your own bank, and your security strategy is your vault.

🔐 What Is a Crypto Wallet?

A crypto wallet is a digital tool that stores your private and public keys. It lets you send, receive, and manage your crypto.

There are two main types:

  1. Hot wallets – connected to the internet
  2. Cold wallets – offline and physically secured

Let’s explore both.

🌐 Hot Wallets: Convenience Meets Risk

Hot wallets are always online, making them easy to use for trading, DeFi, or daily transactions.

Types of Hot Wallets:

  • Web wallets (e.g., MetaMask, Trust Wallet)
  • Mobile apps (e.g., Coinbase Wallet, Phantom)
  • Desktop wallets (e.g., Exodus, Electrum)

Pros:

  • Quick access to funds
  • Easy integration with DApps and exchanges
  • Great for beginners and active traders

Cons:

  • Higher risk of hacks, malware, and phishing
  • Device or browser compromise can expose keys

Best Practices for Hot Wallets:

  • Use 2FA (Two-Factor Authentication)
  • Never store large amounts
  • Double-check URLs to avoid fake websites
  • Avoid public Wi-Fi while transacting

🧊 Cold Wallets: Ultimate Security

Cold wallets are offline storage solutions, ideal for long-term investors or large holdings.

Types of Cold Wallets:

  • Hardware wallets (e.g., Ledger Nano X, Trezor)
  • Paper wallets (QR code + private key printed on paper)
  • Air-gapped devices (old smartphones with no internet access)

Pros:

  • Immune to online hacks
  • Best for HODLing and large sums
  • You own full control

Cons:

  • Less convenient for daily use
  • Loss or damage without backups = permanent loss

Best Practices for Cold Wallets:

  • Buy hardware wallets directly from the manufacturer
  • Backup your seed phrase on metal plates or offline storage
  • Keep backups in secure, separate locations

🔄 Custodial vs. Non-Custodial Wallets

🏩 Custodial Wallets

Managed by exchanges (e.g., Binance, Coinbase). You don’t own the private keys.

Pros:

  • Easy to use
  • Ideal for beginners

Cons:

  • Not your keys, not your crypto
  • Vulnerable to hacks or platform failures

🔓 Non-Custodial Wallets

You own the keys. Wallets like MetaMask, Trust Wallet, or hardware devices.

Pros:

  • Full control and ownership
  • Safer long-term storage

Cons:

  • Losing your seed phrase = permanent loss
  • Requires more responsibility

Tip: Token Metrics recommends non-custodial wallets for storing long-term holdings and moonshot tokens.

🔐 How Token Metrics Enhances Crypto Security

Token Metrics is an AI-powered crypto research and trading platform trusted by thousands of investors. While it doesn’t store your crypto directly, it helps you manage risk and store assets wisely by:

1. Identifying Safe Assets

Token Metrics gives you AI-generated grades for tokens—helping you avoid scams and invest in credible projects worth storing long-term.

2. Trading Tools with Wallet Integration

You can explore tokens, assess moonshots, and initiate trades directly from your connected Web3 wallet without leaving the platform.

3. Portfolio Tracking with Security

Token Metrics allows you to track wallets and portfolio performance without requiring access to your private keys.

4. Educational Guidance

Through webinars, blog content, and investor resources, Token Metrics educates users on how to safely store their crypto in hot and cold wallets.

🧠 Tips to Keep Your Crypto Safe in 2025

✅ Use Hardware Wallets for Large Amounts

Your long-term Bitcoin, Ethereum, and moonshot tokens should live on a hardware wallet, not on an exchange.

✅ Store Your Seed Phrase Offline

Do NOT keep your recovery phrase in Google Docs or your phone. Use metal seed phrase storage or write it down and lock it in a safe.

✅ Use Multiple Wallets

Diversify storage:

  • Hot wallet for daily use
  • Cold wallet for savings
  • Separate wallet for DeFi

✅ Avoid Suspicious Links and Apps

Phishing is the #1 crypto threat. Double-check URLs, don’t sign unknown transactions, and avoid shady browser extensions.

✅ Monitor Wallet Activity

Use platforms like Token Metrics Alerts or Etherscan to track your wallet and get notified of suspicious activity.

đŸȘ™ How to Store Different Types of Crypto

‍

🧭 Final Thoughts

Storing cryptocurrency securely is just as important as choosing the right tokens to invest in. Whether you’re a day trader, long-term investor, or moonshot hunter, knowing when and where to store your crypto is key to protecting your wealth.

In 2025, the best strategy combines:

  • Cold wallets for large, long-term holdings
  • Hot wallets for convenience and trading
  • Non-custodial options to retain full control
  • AI tools like Token Metrics to identify trustworthy assets and avoid scams

When you store your crypto properly, you don’t just protect your assets—you gain peace of mind.

Token Metrics API

How to Build Crypto Trading Dashboard Using the Token Metrics Crypto Data API on Dune

Token Metrics Team
8 min
MIN

In today’s fast-paced crypto world, real-time data isn’t a luxury—it’s a necessity. For traders, analysts, and developers, being able to access live, actionable insights can mean the difference between profit and loss. That’s why the integration of the Token Metrics Crypto Data API with Dune is a game-changer for anyone seeking to create live dashboards backed by intelligent trading data.

In this post, we’ll walk through how to use this top crypto API to build dynamic dashboards on Dune. Whether you’re tracking bullish signals, backtesting trading strategies, or identifying top-performing tokens, this integration makes it possible—without any paid license.

Let’s dive into how you can use the best free crypto API available today to transform your trading.

What Is the Token Metrics Crypto Data API?

The Token Metrics Crypto Data API is a developer-focused gateway to powerful, AI-driven crypto data. It’s one of the top crypto APIs in 2025, giving you access to:

  • Real-time and historical trading signals
  • Proprietary trader and investor grades
  • Alpha metrics comparing trading vs. holding performance
  • Bullish and bearish token flags

This API is used by both professional quant traders and beginners seeking to automate insights. And the best part? Token Metrics provides free crypto API access to selected datasets, allowing you to create powerful dashboards without spending a dime.

Why Dune + Token Metrics API = Power Tools for Traders

Dune is a blockchain analytics platform that allows you to write SQL queries and create dashboards using on-chain and off-chain data. Now that Token Metrics datasets are available on Dune, you can combine the best of both worlds:

  • Free access to high-signal proprietary metrics
  • Real-time data visualizations via Dune’s drag-and-drop dashboard builder
  • Actionable insights based on AI-driven trading intelligence

This integration unlocks a whole new level of transparency and utility for crypto analysts, portfolio managers, and DeFi enthusiasts.

Getting Started: Accessing Token Metrics Data on Dune

To begin, create a free Dune account. Once logged in, navigate to the Token Metrics datasets. These are publicly accessible and updated regularly. You’ll find tables for:

  • trading_signals
  • trader_grades
  • investors_grades
  • tokens

Start a new SQL query and choose the dataset you want to explore. Here’s what you’ll find in the trading signals table:

‍

‍

Step-by-Step: Creating an Actionable Dashboard with Token Metrics Data

1. Query the Trading Signal Returns

Write a SQL query to calculate the average return of trading vs. holding strategies. For example:

This gives you the alpha—how much better the Token Metrics strategy performs compared to just HODLing.

In one real example, the average signal return across all tokens was 1630%, while holding returned just 400%. That’s a 12X improvement powered by this top crypto API.

2. Identify Top-Performing Tokens

Now let’s list tokens with the highest average alpha:

Tokens like BTC, ETH, BNB, and even newer ones like Virtuals stand out due to exceptional alpha performance.

3. Visualize Trader Grades vs. Alpha

The trader grade is a proprietary score from Token Metrics that predicts how favorable a token is for short-term traders.

Use a scatter plot to correlate trader grades with average alpha:

  • X-axis: Trader Grade
  • Y-axis: Average Alpha
  • Group by: Token Symbol

This helps you visually determine which tokens score high and offer exceptional returns—an essential tool for making actionable trading decisions.

4. Track the Latest Bullish Signals

Want to know which tokens are bullish right now? Here’s a query to find the most recent tokens flagged as bullish:

For example, on July 4th, tokens like BNB, XRP, and BTC were among the most recent bullish signals—perfect for immediate trade setups.

5. Build and Share Your Dashboard

Once you’ve run your queries:

  • Click “Add Visualization” in Dune
  • Choose from chart types (bar, scatter, progress bar, etc.)
  • Customize colors and filters
  • Combine multiple charts into a single dashboard

Your final product will be a real-time dashboard powered by the best crypto API, delivering insights that you—and your team—can act on instantly.

Why Token Metrics Is the Best Free Crypto API for Traders

Here’s why Token Metrics stands out among other APIs:

✅ AI-Driven Signals

Most APIs deliver raw data. Token Metrics provides curated signals, generated from machine learning models trained on market cycles, indicators, and price action.

✅ Proprietary Metrics

Access unique indicators like trader grade and investor grade, unavailable anywhere else.

✅ Real Historical Alpha

Use the API to backtest strategies. In the example shown, the AI strategy outperformed the market by over 1000X for some tokens.

✅ Seamless Integration

Whether you're using Dune, Zapier, OpenAI, or Eliza OS, Token Metrics is easy to integrate and query—making it the top crypto API for developers and analysts alike.

Final Thoughts

The combination of Token Metrics’ intelligent data and Dune’s visualization tools puts immense power in your hands. Whether you’re tracking market trends, building bots, or guiding portfolio decisions, this integration gives you everything you need to trade smarter.

With free access to real-time trading signals, alpha comparisons, and powerful visualizations, Token Metrics proves why it's the best crypto API for today’s data-driven investor.

Ready to try it out?
👉 Explore the Free Crypto API
👉 Start Building on Dune

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products