Back to blog
Research

What is Self-Sovereign Identity in Web3? The Complete Guide to Digital Freedom in 2025

Discover the essentials of Self Sovereign Identity in Web3. Understand its benefits and challenges in this clear, straightforward guide. Read more now!
Talha Ahmad
5 min
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe

In today’s digital world, our identities define how we interact online—from accessing services to proving who we are. However, traditional identity management systems often place control of your personal information in the hands of centralized authorities, such as governments, corporations, or social media platforms. This centralized control exposes users to risks like data breaches, identity theft, and loss of privacy. Enter Self-Sovereign Identity (SSI), a revolutionary digital identity model aligned with the core principles of Web3: decentralization, user empowerment, and true digital ownership. Understanding what is self sovereign identity in Web3 is essential in 2025 for anyone who wants to take full control of their digital identity and navigate the decentralized future safely and securely.

Understanding Self-Sovereign Identity: The Foundation of Digital Freedom

At its core, self sovereign identity is a new digital identity model that enables individuals to own, manage, and control their identity data without relying on any central authority. Unlike traditional identity systems, where identity data is stored and controlled by centralized servers or platforms—such as social media companies or government databases—SSI empowers users to become the sole custodians of their digital identity.

The self sovereign identity model allows users to securely store their identity information, including identity documents like a driver’s license or bank account details, in a personal digital wallet app. This wallet acts as a self sovereign identity wallet, enabling users to selectively share parts of their identity information with others through verifiable credentials. These credentials are cryptographically signed by trusted issuers, making them tamper-proof and instantly verifiable by any verifier without needing to contact the issuer directly.

This approach means users have full control over their identity information, deciding exactly what data to share, with whom, and for how long. By allowing users to manage their digital identities independently, SSI eliminates the need for centralized authorities and reduces the risk of data breaches and unauthorized access to sensitive information.

The Web3 Context: Why SSI Matters Now

The emergence of Web3—a decentralized internet powered by blockchain and peer-to-peer networks—has brought new challenges and opportunities for digital identity management. Traditional login methods relying on centralized platforms like Google or Facebook often result in users surrendering control over their personal data, which is stored on centralized servers vulnerable to hacks and misuse.

In contrast, Web3 promotes decentralized identity, where users own and control their digital credentials without intermediaries. The question what is self sovereign identity in Web3 becomes especially relevant because SSI is the key to realizing this vision of a user-centric, privacy-respecting digital identity model.

By 2025, businesses and developers are urged to adopt self sovereign identity systems to thrive in the Web3 ecosystem. These systems leverage blockchain technology and decentralized networks to create a secure, transparent, and user-controlled identity infrastructure, fundamentally different from centralized identity systems and traditional identity management systems.

The Three Pillars of Self-Sovereign Identity

SSI’s robust framework is built on three essential components that work together to create a secure and decentralized identity ecosystem:

1. Blockchain Technology

Blockchain serves as a distributed database or ledger that records information in a peer-to-peer network without relying on a central database or centralized servers. This decentralized nature makes blockchain an ideal backbone for SSI, as it ensures data security, immutability, and transparency.

By storing digital identifiers and proofs on a blockchain, SSI systems can verify identity data without exposing the actual data or compromising user privacy. This eliminates the vulnerabilities associated with centralized platforms and frequent data breaches seen in traditional identity systems.

2. Decentralized Identifiers (DIDs)

A Decentralized Identifier (DID) is a new kind of globally unique digital identifier that users fully control. Unlike traditional identifiers such as usernames or email addresses, which depend on centralized authorities, DIDs are registered on decentralized networks like blockchains.

DIDs empower users with user control over their identity by enabling them to create and manage identifiers without relying on a central authority. This means users can establish secure connections and authenticate themselves directly, enhancing data privacy and reducing reliance on centralized identity providers.

3. Verifiable Credentials (VCs)

Verifiable Credentials are cryptographically secure digital documents that prove certain attributes about an individual, organization, or asset. Issued by trusted parties, these credentials can represent anything from a university diploma to a government-issued driver’s license.

VCs are designed to be tamper-proof and easily verifiable without contacting the issuer, thanks to blockchain and cryptographic signatures. This ensures enhanced security and trustworthiness in digital identity verification processes, while allowing users to share only the necessary information through selective disclosure.

How SSI Works: The Trust Triangle

The operation of SSI revolves around a trust triangle involving three key participants:

  • Holder: The individual who creates their decentralized identifier using a digital wallet and holds their digital credentials.
  • Issuer: A trusted entity authorized to issue verifiable credentials to the holder, such as a government, university, or bank.
  • Verifier: An organization or service that requests proof of identity or attributes from the holder to validate their claims.

When a verifier requests identity information, the holder uses their self sovereign identity wallet to decide which credentials to share, ensuring full control and privacy. This interaction eliminates the need for centralized intermediaries and reduces the risk of identity theft.

Token Metrics: Leading the Charge in Web3 Analytics and Security

As SSI platforms gain traction, understanding their underlying token economies and security is critical for investors and developers. Token Metrics is a leading analytics platform that provides deep insights into identity-focused projects within the Web3 ecosystem.

By analyzing identity tokens used for governance and utility in SSI systems, Token Metrics helps users evaluate project sustainability, security, and adoption potential. This is crucial given the rapid growth of the digital identity market, projected to reach over $30 billion by 2025.

Token Metrics offers comprehensive evaluations, risk assessments, and performance tracking, empowering stakeholders to make informed decisions in the evolving landscape of self sovereign identity blockchain projects.

Real-World Applications of SSI in 2025

Financial Services and DeFi

SSI streamlines Know Your Customer (KYC) processes by enabling users to reuse verifiable credentials issued by one institution across multiple services. This reduces redundancy and accelerates onboarding, while significantly lowering identity fraud, which currently costs billions annually.

Healthcare and Education

SSI enhances the authenticity and privacy of medical records, educational certificates, and professional licenses. Universities can issue digital diplomas as VCs, simplifying verification and reducing fraud.

Supply Chain and Trade

By assigning DIDs to products and issuing VCs, SSI improves product provenance and combats counterfeiting. Consumers gain verifiable assurance of ethical sourcing and authenticity.

Gaming and NFTs

SSI allows users to prove ownership of NFTs and other digital assets without exposing their entire wallet, adding a layer of privacy and security to digital asset management.

Advanced SSI Features: Privacy and Security

Selective Disclosure

SSI enables users to share only specific attributes of their credentials. For example, proving age without revealing a full birthdate helps protect sensitive personal information during verification.

Zero-Knowledge Proofs

Zero-knowledge proofs (ZKPs) allow users to prove statements about their identity without revealing the underlying data. For instance, a user can prove they are over 18 without sharing their exact birthdate, enhancing privacy and security in digital interactions.

Current SSI Implementations and Projects

Several initiatives showcase the practical adoption of SSI:

  • ID Union (Germany): A decentralized identity network involving banks and government bodies.
  • Sovrin Foundation: An open-source SSI infrastructure leveraging blockchain for verifiable credentials.
  • European Blockchain Services Infrastructure (EBSI): Supports cross-border digital diplomas and identity.
  • Finland’s MyData: Empowers citizens with control over personal data across sectors.

These projects highlight SSI’s potential to transform identity management globally.

Challenges and Considerations

Technical Challenges

Managing private keys is critical; losing a private key can mean losing access to one’s identity. Solutions like multi-signature wallets and biometric authentication are being developed to address this.

Regulatory Landscape

Global regulations, including the General Data Protection Regulation (GDPR) and emerging frameworks like Europe’s eIDAS 2.0, are shaping SSI adoption. Ensuring compliance while maintaining decentralization is a key challenge.

Adoption Barriers

Despite the promise, some critics argue the term "self-sovereign" is misleading because issuers and infrastructure still play roles. Improving user experience and educating the public are essential for widespread adoption.

The Future of SSI in Web3

By 2025, self sovereign identity systems will be vital for secure, private, and user-centric digital interactions. Key trends shaping SSI’s future include:

  • Enhanced Interoperability between blockchains and DID methods.
  • Improved User Experience through intuitive wallets and interfaces.
  • Regulatory Clarity supporting SSI frameworks.
  • Integration with AI for advanced cryptographic verification.

Implementation Guidelines for Businesses

Businesses aiming to adopt SSI should:

  • Utilize blockchain platforms like Ethereum or Hyperledger Indy that support SSI.
  • Prioritize user-friendly digital wallets to encourage adoption.
  • Ensure compliance with global data protection laws.
  • Collaborate across industries and governments to build a robust SSI ecosystem.

Conclusion: Embracing Digital Sovereignty

Self-Sovereign Identity is more than a technological innovation; it represents a fundamental shift towards digital sovereignty—where individuals truly own and control their online identities. As Web3 reshapes the internet, SSI offers a secure, private, and user-centric alternative to centralized identity systems that have long dominated the digital world.

For professionals, investors, and developers, understanding what is self sovereign identity in Web3 and leveraging platforms like Token Metrics is crucial to navigating this transformative landscape. The journey toward a decentralized, privacy-respecting digital identity model has begun, and those who embrace SSI today will lead the way in tomorrow’s equitable digital world.

‍

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
About Token Metrics
Token Metrics: AI-powered crypto research and ratings platform. We help investors make smarter decisions with unbiased Token Metrics Ratings, on-chain analytics, and editor-curated “Top 10” guides. Our platform distills thousands of data points into clear scores, trends, and alerts you can act on.
30 Employees
analysts, data scientists, and crypto engineers
30 Employees
analysts, data scientists, and crypto engineers
30 Employees
analysts, data scientists, and crypto engineers
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Support and Resistance API: Auto-Calculate Smart Levels for Better Trades

Token Metrics Team
4

Most traders still draw lines by hand in TradingView. The support and resistance API from Token Metrics auto-calculates clean support and resistance levels from one request, so your dashboard, bot, or alerts can react instantly. In minutes, you’ll call /v2/resistance-support, render actionable levels for any token, and wire them into stops, targets, or notifications. Start by grabbing your key on Get API Key, then Run Hello-TM and Clone a Template to ship a production-ready feature fast.

What You’ll Build in 2 Minutes

A minimal script that fetches Support/Resistance via /v2/resistance-support for a symbol (e.g., BTC, SOL).

  • A one-liner curl to smoke-test your key.
  • A UI pattern to display nearest support, nearest resistance, level strength, and last updated time.

Next Endpoints to add

  • /v2/trading-signals (entries/exits)
  • /v2/hourly-trading-signals (intraday updates)
  • /v2/tm-grade (single-score context)
  • /v2/quantmetrics (risk/return framing)

Why This Matters

Precision beats guesswork. Hand-drawn lines are subjective and slow. The support and resistance API standardizes levels across assets and timeframes, enabling deterministic stops and take-profits your users (and bots) can trust.

Production-ready by design. A simple REST shape, predictable latency, and clear semantics let you add levels to token pages, automate SL/TP alerts, and build rule-based execution with minimal glue code.

Where to Find

Need the Support and Resistance data? The cURL request for it is in the top right of the API Reference for quick access.

👉 Keep momentum: Get API Key • Run Hello-TM • Clone a Template

How It Works (Under the Hood)

The Support/Resistance endpoint analyzes recent price structure to produce discrete levels above and below current price, along with strength indicators you can use for priority and styling. Query /v2/resistance-support?symbol=<ASSET>&timeframe=<HORIZON> to receive arrays of level objects and timestamps.

Polling vs webhooks. For dashboards, short-TTL caching and batched fetches keep pages snappy. For bots and alerts, use queued jobs or webhooks (where applicable) to avoid noisy, bursty polling—especially around market opens and major events.

Production Checklist

  • Rate limits: Respect plan caps; add client-side throttling.
  • Retries/backoff: Exponential backoff with jitter for 429/5xx; log failures.
  • Idempotency: Make alerting and order logic idempotent to prevent duplicates.
  • Caching: Memory/Redis/KV with short TTLs; pre-warm top symbols.
  • Batching: Fetch multiple assets per cycle; parallelize within rate limits.
  • Threshold logic: Add %-of-price buffers (e.g., alert at 0.3–0.5% from level).
  • Error catalog: Map common 4xx/5xx to actionable user guidance; keep request IDs.
  • Observability: Track p95/p99; measure alert precision (touch vs approach).
  • Security: Store API keys in a secrets manager; rotate regularly.

Use Cases & Patterns

  • Bot Builder (Headless): Use nearest support for stop placement and nearest resistance for profit targets. Combine with /v2/trading-signals for entries/exits and size via Quantmetrics (volatility, drawdown).
  • Dashboard Builder (Product): Add a Levels widget to token pages; badge strength (e.g., High/Med/Low) and show last touch time. Color the price region (below support, between levels, above resistance) for instant context.
  • Screener Maker (Lightweight Tools): “Close to level” sort: highlight tokens within X% of a strong level. Toggle alerts for approach vs breakout events.
  • Risk Management: Create policy rules like “no new long if price is within 0.2% of strong resistance.” Export daily level snapshots for audit/compliance.

Next Steps

  • Get API Key — generate a key and start free.
  • Run Hello-TM — verify your first successful call.
  • Clone a Template — deploy a levels panel or alerts bot today.
  • Watch the demo: Compare plans: Scale confidently with API plans.

FAQs

1) What does the Support & Resistance API return?

A JSON payload with arrays of support and resistance levels for a symbol (and optional timeframe), each with a price and strength indicator, plus an update timestamp.

2) How timely are the levels? What are the latency/SLOs?

The endpoint targets predictable latency suitable for dashboards and alerts. Use short-TTL caching for UIs, and queued jobs or webhooks for alerting to smooth traffic.

3) How do I trigger alerts or trades from levels?

Common patterns: alert when price is within X% of a level, touches a level, or breaks beyond with confirmation. Always make downstream actions idempotent and respect rate limits.

4) Can I combine levels with other endpoints?

Yes—pair with /v2/trading-signals for timing, /v2/tm-grade for quality context, and /v2/quantmetrics for risk sizing. This yields a complete decide-plan-execute loop.

5) Which timeframe should I use?

Intraday bots prefer shorter horizons; swing/position dashboards use daily or higher-timeframe levels. Offer a timeframe toggle and cache results per setting.

6) Do you provide SDKs or examples?

Use the REST snippets above (JS/Python). The docs include quickstarts, Postman collections, and templates—start with Run Hello-TM.

7) Pricing, limits, and enterprise SLAs?

Begin free and scale as you grow. See API plans for rate limits and enterprise SLA options.

Disclaimer

This content is for educational purposes only and does not constitute financial advice. Always conduct your own research before making any trading decisions.

Research

Quantmetrics API: Measure Risk & Reward in One Call

Token Metrics Team
5

Most traders see price—quants see probabilities. The Quantmetrics API turns raw performance into risk-adjusted stats like Sharpe, Sortino, volatility, drawdown, and CAGR so you can compare tokens objectively and build smarter bots and dashboards. In minutes, you’ll query /v2/quantmetrics, render a clear performance snapshot, and ship a feature that customers trust. Start by grabbing your key at Get API Key, Run Hello-TM to verify your first call, then Clone a Template to go live fast.

What You’ll Build in 2 Minutes

  • A minimal script that fetches Quantmetrics for a token via /v2/quantmetrics (e.g., BTC, ETH, SOL).
  • A smoke-test curl you can paste into your terminal.
  • A UI pattern that displays Sharpe, Sortino, volatility, max drawdown, CAGR, and lookback window.

Next Endpoints to Add

  • /v2/tm-grade (one-score signal)
  • /v2/trading-signals
  • /v2/hourly-trading-signals (timing)
  • /v2/resistance-support (risk placement)
  • /v2/price-prediction (scenario planning)

Why This Matters

Risk-adjusted truth beats hype. Price alone hides tail risk and whipsaws. Quantmetrics compresses edge, risk, and consistency into metrics that travel across assets and timeframes—so you can rank universes, size positions, and communicate performance like a professional.

Built for dev speed

A clean REST schema, predictable latency, and easy auth mean you can plug Sharpe/Sortino into bots, dashboards, and screeners without maintaining your own analytics pipeline. Pair with caching and batching to serve fast pages at scale.

Where to Find

The Quant Metrics cURL request is located in the top right of the API Reference, allowing you to easily integrate it with your application.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

How It Works (Under the Hood)

Quantmetrics computes risk-adjusted performance over a chosen lookback (e.g., 30d, 90d, 1y). You’ll receive a JSON snapshot with core statistics:

  • Sharpe ratio: excess return per unit of total volatility.
  • Sortino ratio: penalizes downside volatility more than upside.
  • Volatility: standard deviation of returns over the window.
  • Max drawdown: worst peak-to-trough decline.
  • CAGR / performance snapshot: geometric growth rate and best/worst periods.

Call /v2/quantmetrics?symbol=<ASSET>&window=<LOOKBACK> to fetch the current snapshot. For dashboards spanning many tokens, batch symbols and apply short-TTL caching. If you generate alerts (e.g., “Sharpe crossed 1.5”), run a scheduled job and queue notifications to avoid bursty polling.

Production Checklist

  • Rate limits: Understand your tier caps; add client-side throttling and queues.
  • Retries & backoff: Exponential backoff with jitter; treat 429/5xx as transient.
  • Idempotency: Prevent duplicate downstream actions on retried jobs.
  • Caching: Memory/Redis/KV with short TTLs; pre-warm popular symbols and windows.
  • Batching: Fetch multiple symbols per cycle; parallelize carefully within limits.
  • Error catalog: Map 4xx/5xx to clear remediation; log request IDs for tracing.
  • Observability: Track p95/p99 latency and error rates; alert on drift.
  • Security: Store API keys in secrets managers; rotate regularly.

Use Cases & Patterns

  • Bot Builder (Headless): Gate entries by Sharpe ≥ threshold and drawdown ≤ limit, then trigger with /v2/trading-signals; size by inverse volatility.
  • Dashboard Builder (Product): Add a Quantmetrics panel to token pages; allow switching lookbacks (30d/90d/1y) and export CSV.
  • Screener Maker (Lightweight Tools): Top-N by Sortino with filters for volatility and sector; add alert toggles when thresholds cross.
  • Allocator/PM Tools: Blend CAGR, Sharpe, drawdown into a composite score to rank reallocations; show methodology for trust.
  • Research/Reporting: Weekly digest of tokens with Sharpe ↑, drawdown ↓, and volatility ↓.

Next Steps

  • Get API Key — start free and generate a key in seconds.
  • Run Hello-TM — verify your first successful call.
  • Clone a Template — deploy a screener or dashboard today.
  • Watch the demo: VIDEO_URL_HERE
  • Compare plans: Scale with API plans.

FAQs

1) What does the Quantmetrics API return?

A JSON snapshot of risk-adjusted metrics (e.g., Sharpe, Sortino, volatility, max drawdown, CAGR) for a symbol and lookback window—ideal for ranking, sizing, and dashboards.

2) How fresh are the stats? What about latency/SLOs?

Responses are engineered for predictable latency. For heavy UI usage, add short-TTL caching and batch requests; for alerts, use scheduled jobs or webhooks where available.

3) Can I use Quantmetrics to size positions in a live bot?

Yes—many quants size inversely to volatility or require Sharpe ≥ X to trade. Always backtest and paper-trade before going live; past results are illustrative, not guarantees.

4) Which lookback window should I choose?

Short windows (30–90d) adapt faster but are noisier; longer windows (6–12m) are steadier but slower to react. Offer users a toggle and cache each window.

5) Do you provide SDKs or examples?

REST is straightforward (JS/Python above). Docs include quickstarts, Postman collections, and templates—start with Run Hello-TM.

6) Polling vs webhooks for quant alerts?

Dashboards usually use cached polling. For threshold alerts (e.g., Sharpe crosses 1.0), run scheduled jobs and queue notifications to keep usage smooth and idempotent.

7) Pricing, limits, and enterprise SLAs?

Begin free and scale up. See API plans for rate limits and enterprise SLA options.

Disclaimer

All information provided in this blog is for educational purposes only. It is not intended as financial advice. Users should perform their own research and consult with licensed professionals before making any investment or trading decisions.

Research

Crypto Trading Signals API: Put Bullish/Bearish Calls Right in Your App

Token Metrics Team
4

Timing makes or breaks every trade. The crypto trading signals API from Token Metrics lets you surface bullish and bearish calls directly in your product—no spreadsheet wrangling, no chart gymnastics. In this guide, you’ll hit the /v2/trading-signals endpoint, display actionable signals on a token (e.g., SOL, BTC, ETH), and ship a conversion-ready feature for bots, dashboards, or Discord. Start by creating a key on Get API Key, then Run Hello-TM and Clone a Template to go live fast.

What You’ll Build in 2 Minutes

  • A minimal script that fetches Trading Signals via /v2/trading-signals for one symbol (e.g., SOL).
  • A copy-paste curl to smoke-test your key.
  • A UI pattern to render signal, confidence/score, and timestamp in your dashboard or bot.

Endpoints to add next

  • /v2/hourly-trading-signals (intraday updates)
  • /v2/resistance-support (risk placement)
  • /v2/tm-grade (one-score view)
  • /v2/quantmetrics (risk/return context)

Why This Matters

Action over analysis paralysis. Traders don’t need more lines on a chart—they need an opinionated call they can automate. The trading signals API compresses technical momentum and regime reads into Bullish/Bearish events you can rank, alert on, and route into strategies.

Built for dev speed and reliability. A clean schema, predictable performance, and straightforward auth make it easy to wire signals into bots, dashboards, and community tools. Pair with short-TTL caching or webhooks to minimize polling and keep latency low.

Where to Find

You can find the cURL request for Crypto Trading Signals in the top right corner of the API Reference. Use it to access the latest signals!

Live Demo & Templates

  • Trading Bot Starter: Use Bullish/Bearish calls to trigger paper trades; add take-profit/stop rules with Support/Resistance.
  • Dashboard Signal Panel: Show the latest call, confidence, and last-updated time; add a history table for context.
  • Discord/Telegram Alerts: Post signal changes to a channel with a link back to your app.

How It Works (Under the Hood)

Trading Signals distill model evidence (e.g., momentum regimes and pattern detections) into Bullish or Bearish calls with metadata such as confidence/score and timestamp. You request /v2/trading-signals?symbol=<ASSET> and render the most recent event, or a small history, in your UI.

For intraday workflows, use /v2/hourly-trading-signals to update positions or alerts more frequently. Dashboards typically use short-TTL caching or batched fetches; headless bots lean on webhooks, queues, or short polling with backoff to avoid spiky API usage.

Production Checklist

  • Rate limits: Know your tier caps; add client-side throttling and queues.
  • Retries/backoff: Exponential backoff with jitter; treat 429/5xx as transient.
  • Idempotency: Guard downstream actions (don’t double-trade on retries).
  • Caching: Memory/Redis/KV with short TTLs for reads; pre-warm popular symbols.
  • Webhooks & jobs: Prefer webhooks or scheduled workers for signal change alerts.
  • Pagination/Bulk: Batch symbols; parallelize with care; respect limits.
  • Error catalog: Map common 4xx/5xx to clear fixes; log request IDs.
  • Observability: Track p95/p99 latency, error rate, and alert delivery success.
  • Security: Keep keys in a secrets manager; rotate regularly.

Use Cases & Patterns

  • Bot Builder (Headless): Route Bullish into candidate entries; confirm with /v2/resistance-support for risk and TM Grade for quality.
  • Dashboard Builder (Product): Add a “Signals” module per token; color-code state and show history for credibility.
  • Screener Maker (Lightweight Tools): Filter lists by Bullish state; sort by confidence/score; add alert toggles.
  • Community/Discord: Post signal changes with links to token pages; throttle to avoid noise.
  • Allocator/PM Tools: Track signal hit rates by sector/timeframe to inform position sizing (paper-trade first).

Next Steps

  1. Get API Key — create a key and start free.
  2. Run Hello-TM — confirm your first successful call.
  3. Clone a Template — deploy a bot, dashboard, or alerting tool today.

FAQs

1) What does the Trading Signals API return?

A JSON payload with the latest Bullish/Bearish call for a symbol, typically including a confidence/score and generated_at timestamp. You can render the latest call or a recent history for context.

2) Is it real-time? What about latency/SLOs?

Signals are designed for timely, programmatic use with predictable latency. For faster cycles, use /v2/hourly-trading-signals. Add caching and queues/webhooks to reduce round-trips.

3) Can I use the signals in a live trading bot?

Yes—many developers do. A common pattern is: Signals → candidate entry, Support/Resistance → stop/targets, Quantmetrics → risk sizing. Always backtest and paper-trade before going live.

4) How accurate are the signals?

Backtests are illustrative, not guarantees. Treat signals as one input in a broader framework with risk controls. Evaluate hit rates and drawdowns on your universe/timeframe.

5) Do you provide SDKs and examples?

You can integrate via REST using JavaScript and Python snippets above. The docs include quickstarts, Postman collections, and templates—start with Run Hello-TM.

6) Polling vs webhooks for alerts?

Dashboards often use cached polling. For bots/alerts, prefer webhooks or scheduled jobs and keep retries idempotent to avoid duplicate trades or messages.

7) Pricing, limits, and enterprise SLAs?

Begin free and scale as you grow. See API plans for allowances; enterprise SLAs and support are available.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products