Crypto Basics

What is Shiba Inu (SHIB) Coin and is it a Good Investment?

Learn everything about Shiba Inu, its history, benefits and top features in this descriptive guide.
Token Metrics Team
6 minutes
MIN

Shiba Inu (SHIB) is an Ethereum-based altcoin in the world of cryptocurrencies and has recently gained attention. It is a meme-inspired project based on the "Dogecoin" meme featuring the Shiba Inu dog as its mascot.

SHIB has been launched as a decentralized cryptocurrency built on the Ethereum blockchain. It is a deflationary token designed to be used as a medium of exchange and store of value. SHIB has a total supply of 1,000,000,000,000 tokens and is currently being traded on major exchanges such as Binance, OKEx, and Huobi.

SHIB has seen a huge surge in price and popularity since its launch in May 2021 and has become one of the most talked about cryptocurrencies in the market, with arguably the largest community than Bitcoin.

In this article, we will look at Shiba Inu coin, its features, and its potential for investors.

History Of Shiba Inu

Originally, Shiba Inu was launched as a direct competitor of Dogecoin as a joke. Both Shiba Inu and Dogecoin come under the category of meme coins. The meme coin originated from a 2013 meme featuring the Japanese breed dog of the same name. What began as a community-driven token representing a meme became a multi-billion dollar crypto project.

In 2020, an anonymous person or group called "Ryoshi” created a token named after the animal to continue the series of dog meme cryptocurrencies. After gaining full traction in 2021, it was declared the official rival of Dogecoin, leading Floki Inu, Akita Inu, and Dogelon Mars.

From its creation to up until October 2021, the SHIB coin raised from a low of $0.000000000056 to an all-time high of $0.00008616, rising an incredible 150 million percent.

Also, the generous donation of $1 billion in SHIB was a crucial moment in the coin's history that Ethereum's lead engineer and co-founder Vitalik Buterin granted to help fight the devastating spread of COVID-19 in India, making it the largest donation ever given in history. 

The Limelight Of SHIB

Having the support of Elon Musk is like getting the blue tick certification. Elon and his tweets have an extreme market sentiment influence which can make or break the deal for a cryptocurrency.

Shiba Inu is one such outrageously positive outcome of his tweets. When he first posted the Shiba Inu dog image, it gave the first major push to the SHIB token, powering it up by nearly 300%.

Some of the SHIB supporters believe it to be the "Dogecoin-Killer," too.

Top Features of SHIB

SHIB is a deflationary token designed to be used as a medium of exchange and store of value. It is a privacy-enabled decentralized peer-to-peer blockchain network. 

Three types of tokens affect the SHIB ecosystem:

  1. Shiba Inu (SHIB): This is the predominant currency of this project, which sums up to a total supply of 1 quadrillion tokens when it was launched. It can be exchanged with any of the ERC20 tokens of the Ethereum ecosystem.
  2. Leash (LEASH): It is the second token in the Shiba Inu ecosystem, with a total supply of only 107,646 tokens, and was initially a rebase token tied to the price of Dogecoin. A rebase token has a flexible monetary base in that its supply is set to increase or decrease to adjust the token price without affecting the value of anyone's share of coins. The rebase function was later switched off for good, and the token returned to its ERC20 design. 
  3. Bone (BONE): With a total supply of 250,000,000 tokens, only available on ShibaSwap, BONE is intended to fill up the circulation supply gap between the other two tokens. It is a kind of governance token that will allow the ShibArmy to vote on proposals. The more BONE users possess, the more weight their vote will carry in the decision process of future projects.

What are the Benefits of Investing in SHIB?

A Meme-Inspired Cryptocurrency - The core feature of SHIB is that it is a meme-inspired cryptocurrency launched on the Ethereum blockchain. It is a deflationary token designed to be used as a medium of exchange and store of value.

A Lower Price - SHIB is a low-priced token worth in pennies, which is easier for most people to invest in compared to something like Bitcoin.

A Decentralized Network - SHIB aims to be a decentralized network to keep on running, without any reasons for halting.

An Easy-To-Use Wallet - The SHIB blockchain network has been designed to be easy to use. This makes it a preferred option for most users. Three different wallets are available for use: Android, iOS, and Web.

How to Purchase SHIB Token?

SHIB and LEASH can be bought and sold on ShibaSwap, Uniswap, and a growing number of centralized exchanges (CEXs). On September 16, 2021, Coinbase listed SHIB, joining popular CEXs like Binance, Huobi, and Kucoin in trading the token. 

However, Robinhood, a U.S. financial services platform, has yet to list SHIB due to concerns over its security, as stated by its CEO. In contrast, Robinhood's rival Public.com listed SHIB in October 2021.

Is SHIB Token a Good Investment in 2023?

Shiba Inu's growth largely depends on market sentiment. During extremely fearful times, Shiba Inu underperforms; however, during euphoric times, Shiba Inu has the potential to explode in popularity.

While you analyze Shiba Inu's market position, make it a point to distinguish between market capitalization and price. SHIB's low price can deceive new investors, causing them to inaccurately gauge SHIB's price potential. Market capitalization is usually calculated by multiplying the total circulating supply of coins by the current market price of a single coin, which is useful for determining growth potential. 

At the time of writing, SHIB's price is roughly $0.000012. Therefore, if SHIB were to reach $0.01, investors would experience a return of over 800x. However, more importantly, to reach $0.01, Shiba Inu would need to reach a whopping market value north of $5 trillion. This value is greater than the market value of Apple, Google, and Bitcoin combined. As a result, when making realistic price predictions, it's paramount to consider market capitalization.

SHIB Price and Market Capitalization

As of Feb 1st,2023, Shiba Inu is trading at $0.000012 USD. The current market capitalization of the SHIB token is over $6.70B. This makes SHIB rank 81st in terms of market capitalization among all cryptocurrencies.

The Bottom Line

The Shiba Inu developing team is quite secretive about the coin roadmap. Therefore, it's rather difficult to anticipate what's in the cards for the cryptocurrency in the near future.

The developers might decide to burn other coins to make SHIB more deflationary than it is now and help with a price appreciation. We recently learned that Shiba is preparing to enter the Metaverse and will be burning more SHIB soon, further reducing the total supply.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

API Gateway: Architecture, Patterns & Best Practices

Token Metrics Team
5
MIN

Modern distributed systems rely on effective traffic control, security, and observability at the edge. An API gateway centralizes those responsibilities, simplifying client access to microservices and serverless functions. This guide explains what an API gateway does, common architectural patterns, deployment and performance trade-offs, and design best practices for secure, scalable APIs.

What is an API Gateway?

An API gateway is a server-side component that sits between clients and backend services. It performs request routing, protocol translation, aggregation, authentication, rate limiting, and metrics collection. Instead of exposing each service directly, teams present a single, consolidated API surface to clients through the gateway. This centralization reduces client complexity, standardizes cross-cutting concerns, and can improve operational control.

Think of an API gateway as a policy and plumbing layer: it enforces API contracts, secures endpoints, and implements traffic shaping while forwarding requests to appropriate services.

Core Features and Architectural Patterns

API gateways vary in capability but commonly include:

  • Routing and reverse proxy: Direct requests to the correct backend based on path, headers, or other criteria.
  • Authentication and authorization: Validate tokens (JWT, OAuth2), integrate with identity providers, and enforce access policies.
  • Rate limiting and quotas: Protect backend services from overload and manage multi-tenant usage.
  • Request/response transformation: Convert between protocols (HTTP/gRPC), reshape payloads, or aggregate multiple service calls.
  • Observability: Emit metrics, traces, and structured logs for monitoring and debugging.

Common patterns include:

  1. Edge gateway: A public-facing gateway handling authentication, CDN integration, and basic traffic management.
  2. Internal gateway: Placed inside the trust boundary to manage east-west traffic within a cluster or VPC.
  3. Aggregating gateway: Combines multiple backend responses into a single client payload, useful for mobile or low-latency clients.
  4. Per-tenant gateway: For multi-tenant platforms, separate gateways per customer enforce isolation and custom policies.

Deployment Models and Performance Considerations

Choosing where and how to deploy an API gateway affects performance, resilience, and operational cost. Key models include:

  • Managed cloud gateways: Providers offer scalable gateways with minimal operational overhead. They simplify TLS, identity integration, and autoscaling but can introduce vendor lock-in and per-request costs.
  • Self-managed gateways: Run on Kubernetes or VMs for full control over configuration and plugins. This model increases operational burden but enables custom routing logic and deep integration with internal systems.
  • Sidecar or service mesh complement: In service mesh architectures, a gateway can front the mesh, delegating fine-grained service-to-service policies to sidecar proxies.

Performance trade-offs to monitor:

  • Latency: Each hop through the gateway adds processing time. Use lightweight filters, compiled rules, and avoid heavy transformations on hot paths.
  • Concurrency: Ensure the gateway and backend services scale independently. Backpressure, circuit breakers, and backoff strategies help prevent cascading failures.
  • Caching: Edge caching can drastically reduce load and latency for idempotent GET requests. Consider cache invalidation and cache-control headers carefully.

Design Best Practices and Security Controls

Adopt practical rules to keep gateways maintainable and secure:

  • Limit business logic: Keep the gateway responsible for orchestration and policy enforcement, not core business rules.
  • Token-based auth and scopes: Use scoped tokens and short lifetimes for session tokens. Validate signatures and token claims at the gateway level.
  • Observability-first: Emit structured logs, metrics, and distributed traces. Correlate gateway logs with backend traces for faster root cause analysis.
  • Throttling and quotas: Set conservative defaults and make limits configurable per client or plan. Implement graceful degradation for overloaded backends.
  • Policy-driven config: Use declarative policies (e.g., YAML or CRDs) to version and review gateway rules rather than ad-hoc runtime changes.

AI and analytics tools can accelerate gateway design and operating decisions by surfacing traffic patterns, anomaly detection, and vulnerability signals. For example, products that combine real-time telemetry with model-driven insights help prioritize which endpoints need hardened policies.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is an API gateway vs service mesh?

These technologies complement rather than replace each other. The API gateway handles north-south traffic (client to cluster), enforcing authentication and exposing public endpoints. A service mesh focuses on east-west traffic (service-to-service), offering fine-grained routing, mTLS, and telemetry between microservices. Many architectures use a gateway at the edge and a mesh internally for granular control.

FAQ: Common Questions About API Gateways

How does an API gateway impact latency?

A gateway introduces processing overhead for each request, which can increase end-to-end latency. Mitigations include optimizing filters, enabling HTTP/2 multiplexing, using local caches, and scaling gateway instances horizontally.

Do I need an API gateway for every architecture?

Not always. Small monoliths or single-service deployments may not require a gateway. For microservices, public APIs, or multi-tenant platforms, a gateway adds value by centralizing cross-cutting concerns and simplifying client integrations.

What security measures should the gateway enforce?

At minimum, the gateway should enforce TLS, validate authentication tokens, apply rate limits, and perform input validation. Additional controls include IP allowlists, web application firewall (WAF) rules, and integration with identity providers for RBAC.

Can API gateways aggregate responses from multiple services?

Yes. Aggregation reduces client round trips by composing responses from multiple backends. Use caching and careful error handling to avoid coupling performance of one service to another.

How do I test and version gateway policies?

Use a staging environment to run synthetic loads and functional tests against gateway policies. Store configurations in version control, run CI checks for syntax and policy conflicts, and roll out changes via canary deployments.

Is it better to use a managed gateway or self-host?

Managed gateways reduce operational overhead and provide scalability out of the box, while self-hosted gateways offer deeper customization and potentially lower long-term costs. Choose based on team expertise, compliance needs, and expected traffic patterns.

Disclaimer

This article is for educational and technical information only. It does not constitute investment, legal, or professional advice. Readers should perform their own due diligence when selecting and configuring infrastructure components.

Research

RESTful API Essentials: Design, Security, and Best Practices

Token Metrics Team
5
MIN

APIs are the connective tissue of modern applications; among them, RESTful APIs remain a dominant style because they map cleanly to HTTP semantics and scale well across distributed systems. This article breaks down what a RESTful API is, pragmatic design patterns, security controls, and practical monitoring and testing workflows. If you build or consume APIs, understanding these fundamentals reduces integration friction and improves reliability.

What is a RESTful API?

A RESTful API (Representational State Transfer) is an architectural style for designing networked applications. At its core, REST leverages standard HTTP verbs (GET, POST, PUT, PATCH, DELETE) and status codes to perform operations on uniquely identified resources, typically represented as URLs. Key characteristics include:

  • Statelessness: Each request contains all information the server needs to fulfill it, enabling horizontal scaling.
  • Resource orientation: APIs expose resources (users, orders, blocks, etc.) rather than remote procedure calls.
  • Uniform interface: A consistent set of conventions for requests and responses, improving discoverability and client simplicity.

REST is a pragmatic guideline rather than a strict protocol; many APIs labeled "RESTful" adopt REST principles while introducing pragmatic extensions (e.g., custom headers, versioning strategies).

Design Principles & Resource Modeling

Good REST design begins with clear resource modeling. Ask: what are the nouns in the domain, and how do they relate? Use predictable URL structures and rely on HTTP semantics:

  • /resources - list or create a resource (GET to list, POST to create)
  • /resources/{id} - operate on a single resource (GET, PUT/PATCH, DELETE)
  • /resources/{id}/subresources - nested relationships when needed

Design tips to improve usability and longevity:

  1. Use consistent naming: plural nouns, lowercase, and hyphenation for readability.
  2. Support versioning: include a version in the URL or headers to avoid breaking clients (e.g., /v1/...).
  3. Leverage hypermedia judiciously: HATEOAS can improve discoverability but adds complexity; choose when it benefits clients.
  4. Pagination, filtering, sorting: standardize query parameters for large collections to avoid performance pitfalls.
  5. Use appropriate status codes: communicate success, client errors, and server errors clearly (200, 201, 400, 401, 403, 404, 429, 500, etc.).

Security, Authentication, and Rate Limiting

Security is a primary concern for any public-facing API. Typical controls and patterns include:

  • Authentication: OAuth 2.0 (Bearer tokens) and API keys are common. Choose a mechanism that fits your risk model and client types. Avoid transporting credentials in URLs.
  • Authorization: Implement least-privilege checks server-side to ensure tokens only permit intended actions.
  • Encryption: Always use TLS (HTTPS) to protect data in transit; consider TLS 1.2+ and strict ciphers.
  • Rate limiting and throttling: Protect backends from abuse with per-key or per-IP limits and provide informative 429 responses with Retry-After headers.
  • Input validation and sanitization: Validate request bodies and query parameters to reduce injection and parsing vulnerabilities.
  • Audit and logging: Log authentication events, rate-limit triggers, and error patterns while respecting privacy and compliance requirements.

Designing for security also means operational readiness: automated certificate rotation, secrets management, and periodic security reviews reduce long-term risk.

Performance, Monitoring, and AI-Assisted Tooling

Performance tuning for RESTful APIs covers latency, throughput, and reliability. Practical strategies include caching (HTTP Cache-Control, ETags), connection pooling, and database query optimization. Use observability tools to collect metrics (error rates, latency percentiles), distributed traces, and structured logs for rapid diagnosis.

AI-assisted tools can accelerate many aspects of API development and operations: anomaly detection in request patterns, automated schema inference from traffic, and intelligent suggestions for endpoint design or documentation. While these tools improve efficiency, validate automated changes through testing and staged rollouts.

When selecting tooling, evaluate clarity of integrations, support for your API architecture, and the ability to export raw telemetry for custom analysis.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What distinguishes RESTful APIs from other API styles?

REST focuses on resources and uses HTTP semantics; GraphQL centralizes queries into a single endpoint with flexible queries, and gRPC emphasizes high-performance RPCs with binary protocols. Choose based on client needs, performance constraints, and schema evolution requirements.

How should I version a RESTful API without breaking clients?

Common approaches include URL versioning (e.g., /v1/), header-based versioning, or semantic versioning of the API contract. Regardless of method, document deprecation timelines and provide migration guides and compatibility layers where possible.

What are practical testing strategies for RESTful APIs?

Combine unit tests for business logic with integration tests that exercise endpoints and mocks for external dependencies. Use contract tests to ensure backward compatibility and end-to-end tests in staging environments. Automate tests in CI/CD to catch regressions early.

How do I design for backward compatibility?

Additive changes (new fields, endpoints) are generally safe; avoid removing fields, changing response formats, or repurposing status codes. Feature flags and content negotiation can help introduce changes progressively.

What should be included in API documentation?

Provide clear endpoint descriptions, request/response examples, authentication steps, error codes, rate limits, and code samples in multiple languages. Machine-readable specs (OpenAPI/Swagger) enable client generation and testing automation.

Disclaimer: This content is educational and informational only. It does not constitute professional, legal, security, or investment advice. Test and validate any architectural, security, or operational changes in environments that match your production constraints before rollout.

Research

Practical Guide to Claude API Integration

Token Metrics Team
4
MIN

The Claude API is increasingly used to build context-aware AI assistants, document summarizers, and conversational workflows. This guide breaks down what the API offers, integration patterns, capability trade-offs, and practical safeguards to consider when embedding Claude models into production systems.

Overview: What the Claude API Provides

The Claude API exposes access to Anthropic’s Claude family of large language models. At a high level, it lets developers send prompts and structured instructions and receive text outputs, completions, or assistant-style responses. Key delivery modes typically include synchronous completions, streaming tokens for low-latency interfaces, and tools for handling multi-turn context. Understanding input/output semantics and token accounting is essential before integrating Claude into downstream applications.

Capabilities & Feature Surface

Claude models are designed for safety-focused conversational AI and often emphasize instruction following and helpfulness while applying content filters. Typical features to assess:

  • Instruction clarity: Claude responds robustly to explicit, structured instructions and system-level guidelines embedded in prompts.
  • Context handling: Larger context windows enable multi-turn memory and long-document summarization; analyze limits for your use case.
  • Streaming vs batch: Streaming reduces perceived latency in chat apps. Batch completions suit offline generation and analytics tasks.
  • Safety layers: Built-in moderation and safety heuristics can reduce harmful outputs but should not replace application-level checks.

Integration Patterns & Best Practices

Designing a robust integration with the Claude API means balancing performance, cost, and safety. Practical guidance:

  1. Prompt engineering: Build modular prompts: system instructions, user content, and optional retrieval results. Keep system prompts explicit and version-controlled.
  2. Context management: Implement truncation or document retrieval to stay within context limits. Use semantic search to surface the most relevant chunks before calling Claude.
  3. Latency strategies: Use streaming for interactive UI and batch for background processing. Cache frequent completions when possible to reduce API calls.
  4. Safety & validation: Post-process outputs with rule-based checks, content filters, or secondary moderation models to catch hallucinations or policy violations.
  5. Monitoring: Track token usage, latency percentiles, and error rates. Instrument prompts to correlate model changes with downstream metrics.

Primary Use Cases and Risk Considerations

Claude API use cases span chat assistants, summarization, prompt-driven code generation, and domain-specific Q&A. For each area evaluate these risk vectors:

  • Hallucination risk: Models may fabricate facts; rely on provenance and retrieval augmentation when answers require accuracy.
  • Privacy: Avoid sending sensitive personal data unless contract and data processing terms explicitly permit it.
  • Regulatory exposure: For regulated domains (health, legal, finance) include human oversight and compliance review rather than treating outputs as authoritative.
  • Operational cost: Longer contexts and high throughput increase token costs; profile realistic workloads before scaling.

Tools, Libraries, and Ecosystem Fit

Tooling around Claude often mirrors other LLM APIs: HTTP/SDK clients, streaming libraries, and orchestration frameworks. Combine the Claude API with retrieval-augmented generation (RAG) systems, vector stores for semantic search, and lightweight caching layers. AI-driven research platforms such as Token Metrics can complement model outputs by providing analytics and signal overlays when integrating market or on-chain data into prompts.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ — What is the Claude API?

The Claude API is an interface for sending prompts and receiving text-based model outputs from the Claude family. It supports completions, streaming responses, and multi-turn conversations, depending on the provider’s endpoints.

FAQ — How do I manage long documents and context?

Implement a retrieval-augmented generation (RAG) approach: index documents into a vector store, use semantic search to fetch relevant segments, and summarize or stitch results before sending a concise prompt to Claude. Also consider chunking and progressive summarization when documents exceed context limits.

FAQ — How can I control API costs?

Optimize prompts to be concise, cache common responses, batch non-interactive requests, and choose lower-capacity model variants for non-critical tasks. Monitor token usage and set alerts for unexpected spikes.

FAQ — What safety measures are recommended?

Combine Claude’s built-in safety mechanisms with application-level filters, content validation, and human review workflows. Avoid sending regulated or sensitive data without proper agreements and minimize reliance on unverified outputs.

FAQ — When should I use streaming vs batch responses?

Use streaming for interactive chat interfaces where perceived latency matters. Batch completions are suitable for offline processing, analytics, and situations where full output is required before downstream steps.

Disclaimer

This article is for educational purposes only and does not constitute professional, legal, or financial advice. It explains technical capabilities and integration considerations for the Claude API without endorsing specific implementations. Review service terms, privacy policies, and applicable regulations before deploying AI systems in production.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products