Crypto Basics

What is Shiba Inu (SHIB) Coin and is it a Good Investment?

Learn everything about Shiba Inu, its history, benefits and top features in this descriptive guide.
Token Metrics Team
6 minutes
MIN

Shiba Inu (SHIB) is an Ethereum-based altcoin in the world of cryptocurrencies and has recently gained attention. It is a meme-inspired project based on the "Dogecoin" meme featuring the Shiba Inu dog as its mascot.

SHIB has been launched as a decentralized cryptocurrency built on the Ethereum blockchain. It is a deflationary token designed to be used as a medium of exchange and store of value. SHIB has a total supply of 1,000,000,000,000 tokens and is currently being traded on major exchanges such as Binance, OKEx, and Huobi.

SHIB has seen a huge surge in price and popularity since its launch in May 2021 and has become one of the most talked about cryptocurrencies in the market, with arguably the largest community than Bitcoin.

In this article, we will look at Shiba Inu coin, its features, and its potential for investors.

History Of Shiba Inu

Originally, Shiba Inu was launched as a direct competitor of Dogecoin as a joke. Both Shiba Inu and Dogecoin come under the category of meme coins. The meme coin originated from a 2013 meme featuring the Japanese breed dog of the same name. What began as a community-driven token representing a meme became a multi-billion dollar crypto project.

In 2020, an anonymous person or group called "Ryoshi” created a token named after the animal to continue the series of dog meme cryptocurrencies. After gaining full traction in 2021, it was declared the official rival of Dogecoin, leading Floki Inu, Akita Inu, and Dogelon Mars.

From its creation to up until October 2021, the SHIB coin raised from a low of $0.000000000056 to an all-time high of $0.00008616, rising an incredible 150 million percent.

Also, the generous donation of $1 billion in SHIB was a crucial moment in the coin's history that Ethereum's lead engineer and co-founder Vitalik Buterin granted to help fight the devastating spread of COVID-19 in India, making it the largest donation ever given in history. 

The Limelight Of SHIB

Having the support of Elon Musk is like getting the blue tick certification. Elon and his tweets have an extreme market sentiment influence which can make or break the deal for a cryptocurrency.

Shiba Inu is one such outrageously positive outcome of his tweets. When he first posted the Shiba Inu dog image, it gave the first major push to the SHIB token, powering it up by nearly 300%.

Some of the SHIB supporters believe it to be the "Dogecoin-Killer," too.

Top Features of SHIB

SHIB is a deflationary token designed to be used as a medium of exchange and store of value. It is a privacy-enabled decentralized peer-to-peer blockchain network. 

Three types of tokens affect the SHIB ecosystem:

  1. Shiba Inu (SHIB): This is the predominant currency of this project, which sums up to a total supply of 1 quadrillion tokens when it was launched. It can be exchanged with any of the ERC20 tokens of the Ethereum ecosystem.
  2. Leash (LEASH): It is the second token in the Shiba Inu ecosystem, with a total supply of only 107,646 tokens, and was initially a rebase token tied to the price of Dogecoin. A rebase token has a flexible monetary base in that its supply is set to increase or decrease to adjust the token price without affecting the value of anyone's share of coins. The rebase function was later switched off for good, and the token returned to its ERC20 design. 
  3. Bone (BONE): With a total supply of 250,000,000 tokens, only available on ShibaSwap, BONE is intended to fill up the circulation supply gap between the other two tokens. It is a kind of governance token that will allow the ShibArmy to vote on proposals. The more BONE users possess, the more weight their vote will carry in the decision process of future projects.

What are the Benefits of Investing in SHIB?

A Meme-Inspired Cryptocurrency - The core feature of SHIB is that it is a meme-inspired cryptocurrency launched on the Ethereum blockchain. It is a deflationary token designed to be used as a medium of exchange and store of value.

A Lower Price - SHIB is a low-priced token worth in pennies, which is easier for most people to invest in compared to something like Bitcoin.

A Decentralized Network - SHIB aims to be a decentralized network to keep on running, without any reasons for halting.

An Easy-To-Use Wallet - The SHIB blockchain network has been designed to be easy to use. This makes it a preferred option for most users. Three different wallets are available for use: Android, iOS, and Web.

How to Purchase SHIB Token?

SHIB and LEASH can be bought and sold on ShibaSwap, Uniswap, and a growing number of centralized exchanges (CEXs). On September 16, 2021, Coinbase listed SHIB, joining popular CEXs like Binance, Huobi, and Kucoin in trading the token. 

However, Robinhood, a U.S. financial services platform, has yet to list SHIB due to concerns over its security, as stated by its CEO. In contrast, Robinhood's rival Public.com listed SHIB in October 2021.

Is SHIB Token a Good Investment in 2023?

Shiba Inu's growth largely depends on market sentiment. During extremely fearful times, Shiba Inu underperforms; however, during euphoric times, Shiba Inu has the potential to explode in popularity.

While you analyze Shiba Inu's market position, make it a point to distinguish between market capitalization and price. SHIB's low price can deceive new investors, causing them to inaccurately gauge SHIB's price potential. Market capitalization is usually calculated by multiplying the total circulating supply of coins by the current market price of a single coin, which is useful for determining growth potential. 

At the time of writing, SHIB's price is roughly $0.000012. Therefore, if SHIB were to reach $0.01, investors would experience a return of over 800x. However, more importantly, to reach $0.01, Shiba Inu would need to reach a whopping market value north of $5 trillion. This value is greater than the market value of Apple, Google, and Bitcoin combined. As a result, when making realistic price predictions, it's paramount to consider market capitalization.

SHIB Price and Market Capitalization

As of Feb 1st,2023, Shiba Inu is trading at $0.000012 USD. The current market capitalization of the SHIB token is over $6.70B. This makes SHIB rank 81st in terms of market capitalization among all cryptocurrencies.

The Bottom Line

The Shiba Inu developing team is quite secretive about the coin roadmap. Therefore, it's rather difficult to anticipate what's in the cards for the cryptocurrency in the near future.

The developers might decide to burn other coins to make SHIB more deflationary than it is now and help with a price appreciation. We recently learned that Shiba is preparing to enter the Metaverse and will be burning more SHIB soon, further reducing the total supply.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Understanding the Risks of AI Controlling Decentralized Autonomous Organizations

Token Metrics Team
4
MIN

Introduction

Decentralized Autonomous Organizations (DAOs) represent an innovative model for decentralized governance and decision-making in the blockchain space. With the increasing integration of artificial intelligence (AI) into DAOs for automating processes and enhancing efficiency, it is vital to understand the risks associated with allowing AI to control or heavily influence DAOs. This article provides a comprehensive analysis of these risks, exploring technical, ethical, and systemic factors. Additionally, it outlines how analytical platforms like Token Metrics can support informed research around such emerging intersections.

DAO and AI Basics

DAOs are blockchain-based entities designed to operate autonomously through smart contracts and collective governance, without centralized control. AI technologies can offer advanced capabilities by automating proposal evaluation, voting mechanisms, or resource allocation within these organizations. While this combination promises increased efficiency and responsiveness, it also introduces complexities and novel risks.

Technical Vulnerabilities

One significant category of risks involves technical vulnerabilities arising from AI integration into DAOs:

  • Smart Contract Exploits: AI-driven decision-making typically operates on smart contracts. Flaws or bugs in the smart contract code can be exploited, possibly amplified by AI’s autonomous execution.
  • Data Integrity and Quality: AI requires reliable data inputs to function correctly. Malicious actors might inject false or biased data, leading to misguided AI decisions that could harm DAO operations.
  • Algorithmic Errors: AI algorithms might contain bugs, incorrect assumptions, or be insufficiently tested, which could result in unintended behaviors or decisions with negative consequences.

Governance and Control Challenges

Integrating AI into DAO governance raises complex questions around control, transparency, and accountability:

  • Lack of Transparency: AI algorithms, especially those using complex machine learning models, can be opaque, making it difficult for stakeholders to audit decisions or understand governance processes fully.
  • Centralization Risks: AI models are often developed and maintained by specific teams or organizations, which could inadvertently introduce centralization points contrary to the decentralized ethos of DAOs.
  • Unintended Bias: AI systems trained on biased datasets may propagate or exacerbate existing biases within DAO decision-making, risking unfair or harmful outcomes.

Security and Manipulation Risks

The autonomous nature of AI presents unique security concerns:

  • Manipulation Attacks: Adversaries might target the AI’s learning process or input data channels to manipulate outcomes toward malicious goals.
  • Autonomy Exploits: An AI controlling critical DAO functions autonomously could make decisions that are difficult to reverse or disrupt, leading to lasting damage if exploited.
  • Emergent Behavior: Complex AI systems might develop unexpected behaviors in dynamic environments, creating risks hard to anticipate or control within DAO frameworks.

Ethical and Regulatory Concerns

Beyond technical risks, the interaction between AI and DAOs also introduces ethical and regulatory considerations:

  • Accountability Gaps: Determining liability for AI-driven decisions within DAOs is challenging, potentially leading to accountability voids in cases of harm or disputes.
  • Compliance Complexity: Evolving regulatory landscapes surrounding both AI and blockchain could create overlapping or conflicting requirements for AI-controlled DAOs.
  • User Consent and Autonomy: Members participating in DAOs may have concerns over how AI influences governance and whether adequate consent frameworks are in place.

Mitigating Risks with Analytical Tools

Understanding and managing these risks require robust research and analytical frameworks. Platforms such as Token Metrics provide data-driven insights supporting comprehensive evaluation of blockchain projects, governance models, and emerging technologies combining AI and DAOs.

  • Thorough Technical Reviews: Regular audits and reviews of AI algorithms and smart contracts can detect vulnerabilities early.
  • Transparency Initiatives: Employing explainable AI methods enhances trust and allows stakeholder scrutiny.
  • Scenario Analysis: Exploring potential failure modes and adversarial scenarios helps prepare for unexpected outcomes.
  • Community Engagement: Active and informed participation in DAO governance ensures more robust checks and balances.

Conclusion

The fusion of AI and DAOs promises innovative decentralized governance but comes with substantial risks. Technical vulnerabilities, governance challenges, security threats, and ethical concerns highlight the need for vigilant risk assessment and careful integration. Utilizing advanced research platforms like Token Metrics enables more informed and analytical approaches for stakeholders navigating this evolving landscape.

Disclaimer

This article is for educational purposes only and does not constitute financial, legal, or investment advice. Readers should perform their own due diligence and consult professionals where appropriate.

Research

How AI Enhances Vulnerability Detection in Smart Contracts

Token Metrics Team
4
MIN

Introduction: The Growing Concern of Smart Contract Vulnerabilities

Smart contracts are self-executing contracts with the terms directly written into code, widely used across blockchain platforms to automate decentralized applications (DApps) and financial protocols. However, despite their innovation and efficiency, vulnerabilities in smart contracts pose significant risks, potentially leading to loss of funds, exploits, or unauthorized actions.

With the increasing complexity and volume of smart contracts being deployed, traditional manual auditing methods struggle to keep pace. This has sparked interest in leveraging Artificial Intelligence (AI) to enhance the identification and mitigation of vulnerabilities in smart contracts.

Understanding Smart Contract Vulnerabilities

Smart contract vulnerabilities typically arise from coding errors, logic flaws, or insufficient access controls. Common categories include reentrancy attacks, integer overflows, timestamp dependencies, and unchecked external calls. Identifying such vulnerabilities requires deep code analysis, often across millions of lines of code in decentralized ecosystems.

Manual audits by security experts are thorough but time-consuming and expensive. Moreover, the human factor can result in missed weaknesses, especially in complex contracts. As the blockchain ecosystem evolves, utilizing AI to assist in this process has become a promising approach.

The Role of AI in Vulnerability Detection

AI techniques, particularly machine learning (ML) and natural language processing (NLP), can analyze smart contract code by learning from vast datasets of previously identified vulnerabilities and exploits. The primary roles of AI here include:

  • Automated Code Analysis: AI models can scan codebases rapidly to detect patterns indicative of security flaws.
  • Anomaly Detection: AI can recognize atypical or suspicious contract behaviors that deviate from standard practices.
  • Predictive Assessment: By using historical vulnerability data, AI can predict potential risk points in new contracts.
  • Continuous Learning: AI systems can improve over time by incorporating feedback from newly discovered vulnerabilities.

Techniques and Tools Used in AI-Driven Smart Contract Analysis

Several AI-based methodologies have been adopted to aid vulnerability detection:

  1. Static Code Analysis: AI algorithms break down smart contract code without execution, identifying syntactic and structural weaknesses.
  2. Dynamic Analysis and Fuzzing: Leveraging AI to simulate contract execution in varied scenarios to uncover hidden vulnerabilities.
  3. Graph Neural Networks (GNNs): Applied to model relational data within smart contract structures, improving detection of complex vulnerabilities.
  4. Transformer Models: Adapted from NLP, these analyze code semantics to spot nuanced issues beyond basic syntax errors.

Some emerging platforms integrate such AI techniques to provide developers and security teams with enhanced vulnerability scanning capabilities.

Advantages of AI Over Traditional Auditing Methods

Compared to manual or rule-based approaches, AI provides several notable benefits:

  • Scalability: AI can analyze thousands of contracts quickly, which manual teams cannot feasibly match.
  • Consistency: AI reduces human error and subjective assessment variability in vulnerability identification.
  • Real-Time Analysis: AI-powered systems can run continuous scans and provide rapid alerts for emerging threats.
  • Cost Efficiency: Automating portions of the audit process can reduce resource expenditure over time.

Despite these advantages, AI is complementary to expert review rather than a replacement, as audits require contextual understanding and judgment that AI currently cannot fully replicate.

Challenges and Limitations of AI in Smart Contract Security

While promising, AI application in this domain faces several hurdles:

  • Data Quality and Availability: Training AI models requires large, well-labeled datasets of smart contract vulnerabilities, which are limited due to the relative novelty of the field.
  • Complexity of Smart Contracts: Diverse programming languages and design patterns complicate uniform AI analysis.
  • False Positives/Negatives: AI may generate incorrect alerts or miss subtle vulnerabilities, requiring human validation.
  • Adversarial Adaptation: Malicious actors may develop exploits specifically designed to evade AI detection models.

How to Use AI Tools Effectively for Smart Contract Security

Developers and security practitioners can optimize the benefits of AI by:

  • Integrating AI Reviews Early: Employ AI analysis during development cycles to detect vulnerabilities before deployment.
  • Combining with Manual Audits: Use AI as a preliminary screening tool, followed by detailed human assessments.
  • Continuous Monitoring: Monitor deployed contracts with AI tools to detect emergent risks or unexpected behaviors.
  • Leveraging Platforms: Utilizing platforms such as Token Metrics that provide AI-driven analytics for comprehensive research on smart contracts and related assets.

Conclusion & Future Outlook

AI has a growing and important role in identifying vulnerabilities within smart contracts by providing scalable, consistent, and efficient analysis. While challenges remain, the combined application of AI tools with expert audits paves the way for stronger blockchain security.

As AI models and training data improve, and as platforms integrate these capabilities more seamlessly, users can expect increasingly proactive and precise identification of risks in smart contracts.

Disclaimer

This article is for educational and informational purposes only. It does not constitute financial, investment, or legal advice. Always conduct your own research and consider consulting professionals when dealing with blockchain security.

Research

Is Web3 Just a Buzzword or a Real Innovation?

Token Metrics Team
3
MIN

Introduction to Web3

The emergence of Web3 has sparked diverse conversations in technology and blockchain communities. Some consider it the next revolutionary phase of the internet, while others dismiss it as mere hype. This blog explores whether Web3 is just a buzzword or if it represents a tangible and meaningful evolution in digital interactions.

Understanding the Concept of Web3

Web3 broadly refers to a new paradigm of the internet built on decentralized technologies like blockchain, aiming to enable peer-to-peer interactions without centralized intermediaries. Unlike Web2, which is dominated by centralized platforms controlling data and services, Web3 proposes a more open, user-controlled internet.

Key Web3 features include:

  • Decentralization: Data and services distributed across networks instead of centralized servers.
  • Blockchain Integration: Use of immutable ledgers to ensure transparency and security.
  • Token-based Economics: Implementation of cryptocurrencies and tokens to incentivize participation.
  • Enhanced User Sovereignty: Users control their data and digital identities.

The Technology and Applications Behind Web3

Web3 relies heavily on blockchain technology, smart contracts, and decentralized applications (dApps). These components facilitate trustless transactions and programmable digital agreements.

Notable Web3 applications include decentralized finance (DeFi), non-fungible tokens (NFTs), and decentralized autonomous organizations (DAOs). These innovations demonstrate practical use cases extending beyond theoretical frameworks.

Moreover, artificial intelligence (AI) tools are increasingly applied to analyze and navigate the evolving Web3 landscape. Platforms such as Token Metrics leverage AI-driven insights to help users research blockchain projects and assess technology fundamentals without financial recommendations.

Addressing the Skepticism Around Web3

Critics argue that Web3 might be overhyped with limited real-world adoption so far. Challenges include scalability issues, user experience complexities, regulatory uncertainties, and potential misuse.

However, innovation cycles often follow initial hype phases. Historical tech developments illustrate how novel ideas initially labeled as buzzwords eventually matured into foundational technologies over time.

Scenario analysis suggests varying outcomes for Web3:

  1. Gradual Adoption: Incremental integration of Web3 elements into mainstream platforms.
  2. Disruptive Shift: Web3 replaces significant portions of centralized internet infrastructure.
  3. Fragmentation or Stall: Development slows due to technical, regulatory, or societal barriers.

Practical Steps for Evaluating Web3 Projects

Due diligence is essential in understanding Web3 initiatives. Consider these points when researching:

  • Team and Community: Assess project founders' credentials and community engagement.
  • Technology Fundamentals: Examine code repositories, technical whitepapers, and audit reports.
  • Use Case Viability: Analyze how a project solves real problems uniquely.
  • Partnerships and Ecosystem: Look at collaborators and interoperability with existing platforms.

Leveraging AI-powered platforms like Token Metrics can assist users in organizing and interpreting vast data points objectively, aiding a comprehensive understanding.

The Role of Regulation and Governance

Regulation remains an evolving factor for Web3 projects. Decentralized governance models, such as DAOs, aim to allow stakeholder participation in decision-making processes. However, legal frameworks vary globally and can impact project development and adoption.

Understanding the nuanced regulatory landscape is critical for assessing the long-term feasibility and resilience of Web3 innovations.

Conclusion: Is Web3 Buzzword or Real?

Web3 encompasses transformative potentials in reimagining internet architecture. While it faces significant hurdles and exhibits hype characteristics, substantial technological progress and adoption signals suggest it is more than mere buzzword.

Objective analysis, supported by AI research tools like Token Metrics, can facilitate critical evaluation of emerging projects and technologies within this evolving domain.

Disclaimer

This article is for educational and informational purposes only and does not constitute financial advice. Readers should conduct their own research and consult professional advisors before making any decisions related to blockchain technologies or digital assets.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products