Research

Why Are Blockchain Transactions Irreversible? A Comprehensive 2025 Guide

Discover the reasons behind the irreversibility of blockchain transactions and learn how this feature impacts security and accountability. Read more now.
Talha Ahmad
5 min
MIN

In the rapidly evolving landscape of digital finance, one of the most fundamental characteristics that sets blockchain technology apart from traditional banking systems is the irreversible nature of transactions. As we navigate through 2025, understanding why blockchain transactions cannot be reversed has become crucial for anyone engaging with cryptocurrencies, decentralized finance, or blockchain-based applications. This article delves into the technical foundations, security implications, and practical considerations behind the question: why are blockchain transactions irreversible?

Introduction to Blockchain Transactions

Blockchain transactions are the backbone of the crypto world, enabling secure, decentralized, and irreversible exchanges of digital currency. At its core, a blockchain transaction is a digital record of value or data being transferred from one party to another, verified and permanently stored on a blockchain network. Blockchain technology relies on a cryptographic hash function to link blocks together, ensuring that every transaction is securely recorded and cannot be altered or deleted. This process creates a transparent, tamper-proof ledger that underpins the trust and security of digital currency payments and data transfers. In a decentralized network, every transaction is verified by multiple participants, making blockchain transactions not only secure but also resistant to fraud and manipulation.

What are Blockchain Transactions

A blockchain transaction typically involves sending digital currency, such as bitcoin, from one wallet address to another. When a user initiates a transaction, it is broadcast to the blockchain network, where nodes—often called miners—verify its authenticity using advanced cryptographic algorithms. Once the transaction is verified, it is grouped with other transactions into a block. This block is then added to the blockchain, creating a permanent and transparent record. The blockchain network ensures that each transaction is unique and cannot be duplicated or reversed, making it practically impossible for anyone to manipulate or undo a transaction once it has been confirmed. This process is fundamental to the security and reliability of digital currency systems like bitcoin, where every transaction is verified and recorded by a decentralized network of nodes.

Understanding Blockchain Transaction Irreversibility

Blockchain transactions are permanent and cannot be reversed once they are confirmed. This is a key feature of blockchain technology, which powers most cryptocurrencies including Bitcoin. When a transaction is recorded on the blockchain—a public, decentralized ledger—it becomes immutable, meaning it cannot be changed or deleted. This immutability is intentional and fundamental to how blockchain networks operate.

Unlike traditional banking systems where transactions can be disputed or reversed by a central authority such as a bank, blockchain transactions are designed to be permanent and unalterable once confirmed by the network. This unique feature raises important questions about security, trust, and the foundational principles that govern decentralized systems. Blockchain technology also provides a secure way for people to store and transfer money, especially for those without access to traditional banks.

The irreversible nature of transactions is not a flaw but a deliberate design choice. Because Bitcoin and other blockchain projects operate without a central authority, no single person or entity has control over the ledger. This decentralization, combined with the permanent recording of transaction data, ensures that transactions are irreversible and secure by design. This means bitcoin functions as a digital currency that enables decentralized, irreversible transactions without the need for a central authority.

The Technical Foundation of Irreversibility

Cryptographic Immutability

The blockchain begins with the first block, known as the genesis block, which initiates the chain of transactions. The irreversible nature of blockchain transactions stems from sophisticated cryptographic principles and decentralized consensus mechanisms. At the heart of this immutability is the cryptographic hash function, which secures transaction data and links blocks together in a tamper-evident chain.

Each block in the blockchain contains a cryptographic hash of the previous block, known as the previous block's hash, creating an interdependent structure where altering any transaction data in a previous block would change its hash. Since each block references the previous block’s hash, modifying historical data would require generating a new hash for that block and recalculating the hashes for all subsequent blocks. This process is computationally intensive and practically impossible to achieve without enormous computing power.

Digital signatures also play a crucial role. Transactions are signed by users using their private keys, and the network verifies these signatures against the corresponding public keys to ensure authenticity. This cryptographic validation prevents unauthorized modifications and ensures that only the rightful owner can authorize spending from a wallet address.

Moreover, blockchain networks operate as decentralized systems maintained by numerous nodes. Each node holds a copy of the entire ledger, and consensus mechanisms ensure that all nodes agree on the current state of transactions. To alter a confirmed transaction, an attacker would need to control more than half of the network’s computing power—a feat known as a 51% attack. Whoever controls this majority hash power could theoretically alter the blockchain, but this is extremely expensive and difficult to execute on established blockchains like Bitcoin.

The Consensus Mechanism

Transactions become irreversible through the network’s consensus process. When a user initiates a transaction, it is broadcast to the blockchain network, where nodes verify its validity based on transaction details, digital signatures, and available funds. All nodes follow the same protocol to validate and record transactions, ensuring consistency and security across the decentralized network. Validated transactions are then grouped into a new block, which miners compete to add to the blockchain by solving a complex cryptographic puzzle.

The first miner to solve the puzzle successfully adds the block to the chain, linking it to the previous block via its hash. This block addition confirms the transaction and solidifies its place in the blockchain’s history. Network participants typically consider transactions irreversible after a certain number of confirmations—meaning a certain number of blocks have been added on top of the block containing the transaction. This confirmation process reduces risks from temporary forks or reorganizations in the blockchain network. In certain attacks, such as the Vector76 attack, an attacker may withhold one block to manipulate the chain, highlighting the importance of multiple confirmations for transaction security.

Types of Finality in Blockchain Systems

Probabilistic Finality

In proof-of-work (PoW) systems like the Bitcoin blockchain, finality is probabilistic. The bitcoin network relies on proof-of-work and a decentralized network of miners to confirm transactions and secure the blockchain. Transactions become more secure as additional blocks are appended to the chain. Each new block reinforces the validity of previous transactions, making it exponentially harder for an attacker to rewrite transaction history.

For Bitcoin transactions, it is generally recommended to wait for five to six confirmations before considering a transaction irreversible. Each confirmation increases the computational power required to reverse the transaction, making such an attack practically impossible without vast amounts of mining power.

Deterministic Finality

Other blockchain projects employ consensus algorithms based on Byzantine fault tolerance (BFT), such as Tendermint or Ripple, which provide deterministic finality. In these networks, transactions are finalized immediately once the network’s nodes reach consensus, eliminating waiting periods. Once consensus is achieved, transactions are irreversible and permanently recorded.

Deterministic finality offers instant certainty but requires different network architectures and consensus protocols compared to PoW systems.

How Many Confirmations are Required

The security and irreversibility of a blockchain transaction depend on how many confirmations it receives from the blockchain network. A transaction is considered confirmed once it is included in a block and that block is added to the blockchain. However, to ensure the transaction is truly secure and irreversible, it is common practice to wait for a certain number of additional blocks—typically between 3 to 6—to be added on top of the block containing the transaction. This period, known as verification successful waiting, allows the network to further verify the transaction and significantly reduces the risk of attacks such as double spending. The more confirmations a transaction has, the more secure and irreversible it becomes, as reversing it would require an attacker to rewrite multiple blocks, which is practically impossible on a well-established blockchain network.

Why Irreversibility Matters

Security and Trust

The irreversible nature of blockchain transactions serves several critical functions. First, it prevents fraud such as double spending—the attempt to spend the same digital currency twice. Without the possibility of reversing transactions, users cannot duplicate or counterfeit their funds.

Second, irreversibility underpins the trustless nature of decentralized systems like Bitcoin. Users do not need to rely on a central authority or bank to validate transactions; the network’s consensus and cryptographic safeguards ensure transaction authenticity and permanence.

Third, the immutable ledger maintains the integrity of the entire blockchain network. This reliable transaction history builds trust among users and enables transparent auditing without centralized control.

Decentralization Benefits

Unlike payments made through credit cards or banks, which can be reversed or charged back by a central entity, blockchain transactions are free from such interventions. The decentralized system eliminates intermediaries, reducing the risk of censorship, fraud, or manipulation by a central authority.

This decentralization empowers users with full control over their funds, secured by private keys and cryptographic protocols, and ensures that once transactions are confirmed, they are final and irreversible.

Attack Methods: Threats to Blockchain Security

While blockchain technology is designed to make blockchain transactions secure and irreversible, there are still potential threats that can compromise transaction integrity. One of the most well-known threats is double spending, where an attacker tries to spend the same digital currency twice by creating conflicting transactions. Blockchain networks counter this by using a decentralized system of nodes that verify each transaction, ensuring that only one version is accepted.

Another threat is the brute force attack, where an attacker attempts to guess or crack the private key associated with a wallet address to gain unauthorized access to funds. This method is extremely expensive and requires vast amounts of computational power, making it highly impractical on major networks.

Specific attacks like the Finney attack involve a miner creating a new block with a conflicting transaction in an attempt to reverse a previous payment, while a race attack sees an attacker quickly submitting two conflicting transactions to try and double spend before the network can verify the first one.

To defend against these threats, blockchain networks implement security measures such as disabling incoming connections to prevent unauthorized access, using specific outgoing connections for added control, and leveraging smart contracts to automate and secure transactions. These strategies, combined with the decentralized nature of blockchain and the computational power required to alter transaction history, make successful attacks on blockchain transactions extremely rare and costly.

Navigating Irreversible Transactions with Advanced Analytics

Given the permanent nature of blockchain transactions, having access to sophisticated analysis and decision-making tools is increasingly important for traders and investors in 2025. Platforms like Token Metrics have emerged as leading AI-powered solutions for crypto trading, research, and data analytics, helping users make informed decisions before committing to irreversible transactions.

AI-Powered Risk Assessment

Token Metrics integrates AI-grade analytics, execution automation, and real-time alerts within a unified system. Its risk assessment tools evaluate potential transactions by assigning each token a Trader Grade for short-term potential and an Investor Grade for long-term viability. This enables users to prioritize opportunities efficiently and mitigate risks associated with irreversible transactions.

Real-Time Market Intelligence

The platform’s API combines AI-driven analytics with traditional market data, providing users with real-time price and volume information, sentiment analysis from social channels, and comprehensive documentation for research and trading. This wealth of data supports better-informed decisions, reducing the likelihood of costly mistakes in irreversible payments.

Advanced Analytics and Automation

Token Metrics’ AI has a proven track record of identifying profitable trades early, helping users spot winning trades and automate transactions based on predefined parameters. This reduces emotional decision-making and enhances security in a system where transactions cannot be reversed.

The Risks and Precautions

Common Risks

Because blockchain transactions are irreversible, mistakes such as sending funds to the wrong wallet address or falling victim to scams cannot be undone. Users bear full responsibility for verifying transaction details before confirmation.

Best Practices for Safe Transactions

To minimize risk, users should always double-check recipient wallet addresses by copying and pasting them to avoid typos. Conducting test transactions with small amounts before sending large sums is advisable. Understanding network fees and timing can also help ensure smooth transaction processing.

For enhanced security, multi-signature wallets require multiple approvals before funds can be moved, adding an extra layer of protection for significant payments.

Consumer Protection and Fraud Prevention

Even though blockchain transactions are designed to be secure and irreversible, consumers can take additional steps to protect themselves and prevent fraud. One effective method is using escrow services, which hold funds until both parties fulfill their obligations, ensuring that payments are only released when the transaction is complete. Implementing smart contracts can further automate this process, allowing payments to be made only when specific conditions are met, reducing the risk of fraud.

Verifying the transaction history of a wallet address is another important step. By checking past transactions, users can identify any suspicious or fraudulent activity before engaging in a new transaction. Additionally, choosing reputable exchanges and wallet services with strong security measures and a proven track record can provide an extra layer of protection.

By following these best practices, consumers can help ensure that their blockchain transactions remain secure and irreversible, safeguarding their funds and maintaining trust in the blockchain ecosystem.

The Future of Irreversible Transactions in 2025

As blockchain technology advances, the irreversible nature of transactions remains a core feature, but innovations are emerging to enhance security and user experience. Layer 2 solutions enable faster payments while maintaining the security of the base blockchain layer. Smart contract escrows introduce conditional transaction execution, adding flexibility without compromising irreversibility.

Additionally, AI-enhanced security platforms like Token Metrics are pioneering predictive analytics to prevent problematic transactions before they occur, making irreversible payments safer and more manageable.

Institutional Adoption and Professional Trading

The irreversible nature of blockchain transactions has not deterred institutional adoption; rather, it has driven the development of sophisticated risk management tools. AI trading platforms provide insights once reserved for large hedge funds, enabling both retail and professional traders to navigate the crypto market confidently.

Token Metrics bridges the gap between raw blockchain data and actionable decisions, offering an AI layer that empowers traders to outperform the market in an environment where transactions are final and irreversible.

Conclusion

The question of why blockchain transactions are irreversible is answered by the fundamental design of blockchain technology. The combination of cryptographic hash functions, digital signatures, decentralized consensus, and computationally intensive mining ensures that once a transaction is confirmed, it is permanently recorded and practically impossible to reverse.

This irreversible nature is not a limitation but a powerful feature that enables trustless, decentralized networks free from central control and fraud. While it introduces certain risks, responsible users equipped with advanced tools and knowledge can safely harness the benefits of blockchain technology.

As we move further into 2025, innovations in AI-powered analytics, layer 2 solutions, and smart contracts continue to enhance the security and usability of irreversible transactions. Understanding and embracing this core characteristic is essential for anyone participating in the digital currency ecosystem, whether they are casual users, professional traders, or institutional investors.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Crypto Basics

CoinMarketCap API Overview - Top Features, Endpoints and Alternatives

Token Metrics Team
6 Minutes
MIN

CoinMarketCap is one of the most popular cryptocurrency data websites, founded by Brandon Chez in May 2013 and acquired by Binance Capital Mgmt in April 2020.

It provides information about the current prices, market capitalizations, trading volumes, and other key metrics of thousands of cryptocurrencies. Some of the key products offered by CoinMarketCap include price tracking tools, portfolio tracking, cryptocurrency education, crypto API, etc

Coinmarketcap API Overview

The CoinMarketCap provides a range of data solutions through its API (Application Programming Interface) services for developers to access real-time cryptocurrency market data. Developers can get variety of data from its API, such as, Price and Market Data, Historical Crypto Data, Exchange data, Global Metrics and more

The CoinMarketCap API allows developers to retrieve this data programmatically, enabling them to build applications and services that integrate with the cryptocurrency market.

The crypto data APIs are widely used by developers, traders, and analysts to build applications, automate trading strategies, and analyze cryptocurrency markets.

How does the CoinMarketCap API work?

The CoinMarketCap API is a web-based API that provides developers with access to real-time and historical cryptocurrency market data. Here is a brief overview of how the CoinMarketCap API works:

Sign up for an API key: To use the CoinMarketCap API, developers need to sign up for an API key, which they can obtain by creating an account on the CoinMarketCap developer portal.

Once developers have obtained their API key, they can get data from CoinMarketCap API endpoints using their programming language of choice. The API supports a variety of programming languages, including Python, Node.js, Java, and PHP.

Retrieve data: The CoinMarketCap API provides a range of endpoints that developers can use to retrieve data on the current prices, market capitalizations, trading volumes, and other metrics of cryptocurrencies. Developers can choose to retrieve data for all cryptocurrencies or specific cryptocurrencies, and they can also retrieve historical data.

Process data: Once developers have retrieved the data they need from the API, they can process it and use it in their applications or services. For example, they might use the data to build a cryptocurrency price tracker or to analyze market trends.

Manage API usage: To ensure that developers are not overusing the API, CoinMarketCap sets rate limits on API requests. Developers should ensure that their applications do not exceed these rate limits, as doing so can result in their API key being suspended.

Overall, the CoinMarketCap API provides a straightforward and convenient way for developers to access real-time and historical cryptocurrency market data, enabling them to build powerful applications and services that integrate with the cryptocurrency market.

Coinmarketcap API features

Here are some of the top features of the CoinMarketCap API:

Real-time data: The CoinMarketCap API provides real-time data on the current prices, market capitalizations, trading volumes, and other metrics for thousands of cryptocurrencies.

Historical data: The API also allows developers to retrieve historical data for cryptocurrencies, including price, market capitalization, and trading volume.

Customizable endpoints: The CoinMarketCap API offers a variety of customizable endpoints that allow developers to retrieve specific data for the cryptocurrencies they are interested in.

Developer-friendly documentation: The API comes with detailed documentation and code examples to help developers get started quickly and easily.

Multiple language support: The CoinMarketCap API supports multiple programming languages, including Python, Node.js, Java, and PHP.

CoinMarketCap API Endpoints

CoinMarketCap APIs offer various endpoints that provide access to different types of cryptocurrency market data. Such as Price and Market Data Endpoints, Historical Data Endpoints, Exchange Endpoints, Blockchain Data Endpoints, Global Metrics Endpoints, Derivatives Data Endpoints

Endpoint paths follow a pattern matching the type of data provided:

  • Latest Market Data (*/latest)
  • Historical Market Data (*/historical)
  • Metadata (*/info)
  • ID Maps (*/map)

Here are some of the most commonly used endpoints in the CoinMarketCap API:

/cryptocurrency/listings/latest: Returns a list of the latest cryptocurrency listings on CoinMarketCap, including their current price, market capitalization, and trading volume.

/cryptocurrency/info: Returns detailed information about a specific cryptocurrency, including its name, symbol, website, and social media accounts.

/cryptocurrency/market-pairs/latest: Returns a list of the latest market pairs for a specific cryptocurrency, including their current price, volume, and liquidity.

/global-metrics/quotes/latest: Returns the latest global cryptocurrency market metrics, including total market capitalization, trading volume, and Bitcoin dominance.

Is CoinMarketCap API free?

The CoinMarketCap API offers both free and paid plans. The free plan provides limited access to the API, while the paid plans offer more features and higher usage limits.

The free plan of the CoinMarketCap API allows developers to get 9 latest market data endpoints and 10K call credits /month but No historical data and only for Personal use.

The paid plans of the CoinMarketCap API offer higher usage limits and additional features, such as access to more endpoints, more historical data, and priority support. The pricing of the paid plans depends on the number of requests per month and the level of features required.

Overall, the CoinMarketCap API provides developers with a convenient and powerful way to access real-time and historical cryptocurrency market data, whether they are using the free plan or a paid plan.

CoinMarketCap API Alternatives

As for alternatives, there are several other cryptocurrency data APIs available with better features in Free and Paid options, such as:

Token Metrics API

Token Metrics is an AI driven crypto analysis platform which enables its users to research thousands of cryptocurrencies in an automated way. Token Metrics recently launched a Crypto Data API for crypto investors and developers. 

Token Metrics Data API works as a robust crypto API that provides over 14 tested, actionable data endpoints that can empower traders, bots, and platforms. The accuracy and reliability of Token Metrics crypto data helps you make more informed trading decisions with less effort and has been rigorously tested to ensure accuracy.

This AI-powered API allows users to get access to actionable data endpoints to power trading bots, models, and platforms, to make the most money in the crypto space. Developers and crypto traders can easily get the all details from Token Metrics API Documentation.

CryptoCompare API

CryptoCompare Offers real-time and historical cryptocurrency market data, as well as news and social media sentiment analysis. The API supports a wide range of cryptocurrencies, exchanges, and trading pairs, making it a great resource for anyone looking to build a cryptocurrency-related project.

CoinGecko API

CoinGecko provides developers an easy-to-use API that can be integrated into their applications to retrieve information about cryptocurrencies. 

CoinGecko API basic version is free* for those who want it for personal use and testing purposes only with some conditions and limits. CoinGecko free API has a rate limit of 10-30 calls/minute.

Final Thoughts

CoinMarketCap is one of the top platforms in the crypto space, providing access to insightful data about thousands of cryptocurrencies and the market.

However, as time goes on, better solutions are being built that are more powerful and use AI to power their data, like Token Metrics. This allows investors to turn data into actionable insights to make informed investment decisions.

Crypto Basics

What is Bitcoin Halving and How Does it Impact the Market?

Token Metrics Team
7 Minutes
MIN

Over the years, Bitcoin has gained significant popularity and adoption as a means of payment and investment, with a growing number of merchants accepting it as a form of payment and an increasing number of investors buying and holding it as a store of value.

What is Bitcoin Halving?

Bitcoin Halving is a highly anticipated event that takes place every four years in the world of cryptocurrency. It is a pre-programmed adjustment in the Bitcoin blockchain protocol that reduces the mining rewards by 50% for each new block added to the network.

The purpose of the halving is to ensure that the rate of Bitcoin inflation remains under control, and that the total supply of Bitcoin never exceeds 21 million.

The upcoming Bitcoin Halving event has generated a lot of buzz and interest among investors and traders, as it is expected to have a significant impact on the price and overall market sentiment. In this blog post, we will dive deep into the topic of Bitcoin Halving, discussing what it is, how it works, and what to expect from the upcoming halving event.

When was the first Bitcoin Halving?

The first Bitcoin halving occurred on November 28, 2012, approximately four years after the cryptocurrency's launch. At that time, the mining reward for each block added to the Bitcoin blockchain was reduced from 50 BTC to 25 BTC.

This event marked a significant milestone in the Bitcoin ecosystem and signaled the beginning of a new era in the cryptocurrency's monetary policy. Since then, there have been two additional Bitcoin halvings, one in 2016 and another in 2020, with the mining reward reduced to 12.5 BTC and 6.25 BTC, respectively.

The next Bitcoin halving is expected to occur in 2024, at which point the mining reward will be further reduced to 3.125 BTC per block.

Bitcoin Halving Chart

A Bitcoin halving chart is a graphical representation that shows the historical and projected future dates of Bitcoin halvings, as well as the corresponding changes in the Bitcoin mining reward. 

“The chart typically includes a timeline of Bitcoin's history, starting with its launch in 2009, and marks the dates of each halving event as vertical lines. The halving events are also accompanied by a reduction in the Bitcoin mining reward, which is depicted on the chart as a downward sloping curve.”

Bitcoin Halving Chart

Bitcoin halving charts are used by investors, traders, and analysts to track the impact of halvings on the Bitcoin price and market sentiment. These charts can help in predicting potential price movements based on historical trends, as well as analyzing the impact of halvings on the overall supply and demand dynamics of Bitcoin.

Several online platforms offer Bitcoin halving charts that are frequently updated with the latest data and projections. These charts typically include additional features such as zooming, filtering, and customization options to allow users to analyze the data in more detail.

Overall, Bitcoin halving charts are a useful tool for anyone interested in understanding the impact of halving events on the Bitcoin ecosystem.

How does Bitcoin Halving work?

Bitcoin halving is a pre-programmed adjustment to the Bitcoin blockchain protocol that occurs approximately every four years. The process is designed to reduce the amount of new Bitcoin created with each block added to the blockchain by 50%.

The halving is a critical aspect of Bitcoin's monetary policy and serves to control the rate of inflation in the Bitcoin ecosystem.

Bitcoin halving works by reducing the mining rewards that Bitcoin miners receive for adding new blocks to the blockchain. When Bitcoin was first launched in 2009, the mining reward was set at 50 BTC per block.

After the first halving in 2012, the mining reward was reduced to 25 BTC per block. The second halving in 2016 further reduced the reward to 12.5 BTC per block, and the most recent halving in 2020 brought the reward down to 6.25 BTC per block.

The process of Bitcoin halving is automatic and built into the Bitcoin protocol, with a predetermined schedule that reduces the mining reward by half after every 210,000 blocks are added to the blockchain.

This cycle continues until the total supply of Bitcoin reaches 21 million, which is the maximum limit set by the protocol. Once the limit is reached, no new Bitcoins will be created, and miners will rely solely on transaction fees for their rewards.

The impact of Bitcoin halving on the mining industry and overall market sentiment can be significant. As the mining reward is reduced, it becomes more difficult and expensive for miners to earn a profit, leading to a potential decrease in the supply of new Bitcoins and an increase in their price.

Additionally, the halving can create uncertainty and volatility in the Bitcoin market, as investors and traders adjust their strategies based on the changing supply and demand dynamics.

Will BTC price go up or down after halving?

Predicting the exact direction of Bitcoin price movement after halving is difficult, as it is subject to various factors such as market sentiment, demand and supply, and overall adoption of the cryptocurrency. However, based on historical trends, many analysts and experts believe that Bitcoin price tends to go up after halving.

One reason for this belief is the reduction in the rate of new Bitcoin supply. With each halving event, the number of new Bitcoins entering the market decreases, creating a supply shock that can drive the price up due to increased scarcity.

Additionally, the halving can lead to a decrease in the profitability of Bitcoin mining, which could result in some miners leaving the network, reducing the overall supply of new Bitcoin even further.

However, it is also important to note that the impact of halving on Bitcoin price may not be immediate, and the price may experience fluctuations and volatility in the short term.

It is also worth considering that Bitcoin's price is influenced by a range of other factors beyond halving, such as macroeconomic conditions, regulatory developments, and investor sentiment.

Also Read - Is Bitcoin Dead? - Complete Analysis for BTC Investors

Impact of Halving on Bitcoin Miners

Bitcoin halving has a significant impact on Bitcoin miners, as it reduces the reward they receive for adding new blocks to the blockchain. With each halving event, the mining reward is reduced by half, which means that miners must work harder and invest more resources to earn the same amount of Bitcoin.

The reduction in mining rewards can lead to a decrease in profitability for miners, making it more challenging for them to cover their costs and remain profitable. This can lead to smaller miners being pushed out of the market, leaving only the most efficient and well-capitalized miners in the game.

However, there are some ways that miners can adapt to the changing market conditions after halving. For example, miners can lower their operating costs by upgrading their equipment to more efficient models, moving to locations with lower energy costs, or forming mining pools to share resources and reduce competition.

Additionally, as the price of Bitcoin tends to increase after halving, miners may be able to offset the reduced mining rewards by earning more from transaction fees and appreciation in the value of their Bitcoin holdings.

Overall, the impact of halving on Bitcoin miners depends on several factors, such as the cost of mining, the price of Bitcoin, and the level of competition in the market.

While the reduction in mining rewards can create challenges for miners, it is also an essential aspect of Bitcoin's monetary policy, which ensures the controlled release of new Bitcoin into the market and the maintenance of its value over time.

The Bottom Line

In conclusion, Bitcoin halving is a critical aspect of the Bitcoin protocol that serves to control the rate of inflation in the Bitcoin ecosystem.

The process of halving reduces the mining rewards that Bitcoin miners receive for adding new blocks to the blockchain by 50% every four years, until the maximum supply of 21 million Bitcoins is reached.

While the impact of halving on the Bitcoin market and miners can be significant, it is also an essential aspect of Bitcoin's monetary policy, ensuring the controlled release of new Bitcoin into the market and the maintenance of its value over time.

As Bitcoin continues to gain wider adoption and recognition as a legitimate asset, the impact of halving events is likely to become more pronounced, making it an important consideration for investors, traders, and Bitcoin enthusiasts alike.

Crypto Basics

How to Get Crypto Price Data in Excel and Google Sheets?

Token Metrics Team
5 minutes
MIN

Cryptocurrencies have become increasingly popular over the past few years, and more people are now investing in them. As a result, there is a growing need for tools and methods that can help investors track their cryptocurrency holdings and monitor market trends.

One such tool is the use of an API to pull crypto data into an Excel spreadsheet. This method allows investors to easily analyze and manipulate data in a familiar format. In this article, we will explore the steps involved in pulling crypto data into an Excel and Google spreadsheet using Token Metrics Crypto Data API. 

Token Metrics API Overview

The Token Metrics Data API is a comprehensive data solution that offers both real-time and historical market data for cryptocurrencies. Its purpose is to aid developers and businesses in accessing and analyzing data promptly to make informed decisions.

Regardless of whether you're a seasoned developer or just starting in the cryptocurrency world, you can maximize your crypto portfolio using the end-points provided by Token Metrics. 

The Data API provides a stream of 14 endpoints, including exclusive grades, analytics, and indicators, that can be utilized to empower your bots, models, and platforms. The data provided by the API can assist you in:

  • Validating
  • Back-testing, and 
  • Refining your investment decision-making process. 

Let’s check the process of pulling the crypto data into an Excel sheet in the 7-step breakdown below…

Import Crypto Data in Google Sheets and Excel

Here’s the step-by-step breakdown of extracting crypto data into an Excel Sheet using Token Metrics:

1. Register on Token Metrics Platform

First, head over to www.tokenmetrics.com/crypto-data-api and login/signup using your credentials.

Note: If you are new to Token Metrics, then click on Register, and sign-up for a 7-day free trial. One Bonus: You can pay with NFT.

Token metrics free trial

2. Go to Homepage

Once you are in, you will be guided to the homepage, where you will have all rating of crypto assets, as shown below:  

Token metrics crypto market page

3. Click on the DATA API

Now, click on the “DATA API” from the Menu Bar on the top. [Refer to the image below]

Click on Data API

4. Generate Access Key

From here, you need to generate your access key using the "Generate Access Key" button [as seen on the top-right corner of the image below]. 

Generate access key

Important Note:

Copy and save the access key shown on the next page as it will not be made visible again.

5. Open Google Sheets

It’s now time to open Google Sheets and create a new spreadsheet.

In this new spreadsheet, enter some crypto assets under Column 1 and their symbol in Column 2 like this.

Open Google Sheet

Here, we have put TM Token ID in Column 3, a unique identifier associated with each token in the TM Data API ecosystem. This will make your life easier once you become familiar with our interface on a daily basis.

In Column 4 and Column 5, we have put TM Investor Grade and TM Trader Signal, respectively, which will be fetched from TM Data API in the following steps.

6. Go to Extensions and click Apps Script

Now, hover over to the "Extensions" tab under the menu bar and click "Apps Script" where we will write scripts to automate the fetching of the above metrics in the Google Sheets. 

Go to Extensions and click Apps Script

7. Apps Script IDE

Now, our powerful ‘Apps Script IDE’ will be opened, where we will write the code to the script and later deploy as necessary. 

Apps Script IDE

The Code Format: 

We will start writing the script in Code.gs file.

The following part will be focused on the actual code that will be written in the script file.

Run the Open() function once using the above command, and you will see a menu "Update Metrics" in the spreadsheet menu bar with the following options:

  • TM Token Ids
  • TM Investor Grade
  • TM Trader Signal 

You can click on all the three options, one at a time, to see the results displayed on the spreadsheet.

crypto data results

Also, you can update the metrics whenever required by pressing the above buttons in the menu bar, so that you get the accurate data for your investments. 

Crypto data metrics on Google sheet

Interested?

Looking to learn more about our Crypto data API?

Just head over here - developers.tokenmetrics.com

Having explained all this, let the truth be told. Token Metrics does not personally favor or vouch for any particular cryptocurrency in the market. 

The Bottom Line

In conclusion, pulling crypto data into an Excel spreadsheet using an API can be a useful and efficient way to keep track of market trends and analyze cryptocurrency performance. 

By following the steps outlined in this process, one can easily integrate an API into Excel and retrieve real-time data on various cryptocurrencies. 

Additionally, with the vast array of features available on Token Metrics API, one can tailor their data retrieval to specific preferences and easily manipulate the data in Excel for further analysis. 

With the growing importance of cryptocurrencies in the financial world, utilizing APIs to pull crypto data into Excel can provide a valuable tool for traders, investors, and researchers alike.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products