Crypto Basics

XDC Price Prediction 2025, 2030 - Forecast Analysis

Delve into an extensive analysis of XDC's price prediction for 2025 and 2030. Make informed investment decisions in the dynamic world of cryptocurrencies.
Marcus K
6 Minutes
MIN

Cryptocurrency investors are always on the lookout for promising projects that have the potential to deliver significant returns. 

One such project is XDC Network (XDC), a hybrid blockchain that aims to revolutionize the trade and finance sectors globally. 

In this article, we will explore the XDC price prediction for 2025 and 2030, exploring the factors that may influence its future growth and evaluating whether XDC is a good investment.

XDC Network Overview

Before diving into the price prediction, let's first understand what XDC Network is all about. Launched in March 2017, XDC Network is an enterprise-ready blockchain combining the best public and private blockchains.

It offers a decentralized infrastructure solution that enhances efficiency, removes intermediaries, and increases system transparency. Headquartered in Singapore, XDC Network was founded by Karan Bharadwaj, Atul Khekade, and Ritesh Kakkad.

With their expertise and vision, XDC Network has overcome numerous obstacles in the global trading and financial space, bringing together buyers, suppliers, financiers, trade unions, and banks on a peer-to-peer platform.

Historical Performance of XDC

To understand the future potential of XDC, it's crucial to analyze its historical performance. XDC Network has experienced significant fluctuations in its price since its inception. 

In April 2018, the price of XDC reached its highest point at $0.0280, but it didn't sustain this upward momentum and fell to $0.0240.

XDC Price Chart

By November 2018, XDC hit a peak of $0.011, only to drop to its support level of around $0.00067 in December 2018. 

The bearish momentum continued until the beginning of 2020. However, XDC Network recovered and reached an all-time high of $0.1939 in August 2021.

Since then, the price of XDC has experienced some corrections and currently trades around $0.055. Despite the mixed trend, XDC Network holds the potential to recover and reach new highs in the upcoming years.

XDC Current Fundamentals

XDC Network's current fundamentals are crucial in determining its investment potential.

XDC Tokenomics
Start Your Free Trial Today and Uncover Your Token's Price Prediction and Forecast on Token Metrics.

XDC has a market cap of $774,631,428 and a circulating supply of 13,875,309,131 XDC; the trading volume for XDC is around $4,231,293.

XDC Price Prediction: Scenario Analysis

To predict XDC's future price, it is imperative to consider various scenarios that may influence its value. 

In this analysis, we will explore both a bullish and bearish scenario to offer a comprehensive outlook on XDC's potential price movements.

XDC Price Prediction - Bullish Scenario

In an optimistic market scenario where the total crypto market cap reaches $3 trillion and XDC maintains its current 0.05% market dominance, we could anticipate its price surging to $0.11.

In a more bullish projection, with the crypto market expanding to $10 trillion, XDC's value might skyrocket to an impressive $0.38, potentially yielding a 7x return for investors.

XDC Price Prediction
Start Your Free Trial Today and Uncover Your Token's Price Prediction and Forecast on Token Metrics.

XDC Price Prediction - Bearish Scenario

Conversely, in a bearish setting characterized by unfavorable market conditions or intensified competition, XDC's price may face downward pressure, decreasing its market dominance to 0.026%.

In such circumstances, even if the total crypto market cap reaches $3 trillion, XDC could trade around $0.058 in the short term, struggling to surpass $0.19 by 2030, even if the total crypto market cap exceeds $10 trillion.

It's essential to emphasize that these scenarios are speculative in nature and should not be construed as financial advice. The cryptocurrency market is inherently volatile, and prices can exhibit rapid fluctuations. 

Therefore, investors should exercise caution and conduct thorough research before making investment decisions.

XDC Price Prediction: Industry Expert Opinion

To comprehensively analyze XDC's future potential, we gathered industry experts' insights and conducted in-depth research. Here are some expert opinions on the XDC price prediction for 2025:

  • Coincodex.com: According to Coincodex.com XDC price prediction, the price of XDC crypto is expected to be somewhere between $ 0.057229 on the lower end and $ 0.208644 on the high end by the end of 2025, and price prediction for 2030 could be between $ 0.098399 on the lower end and $ 0.138895 on the high end.
  • Ambcrypto.com: Ambcrypto predicts that the significant upgrades in the XDC Network ecosystem could attract more investors, potentially leading to a price of $0.13 to $0.2 by 2030.
  • BitcoinWisdom: According to BitcoinWisdom's XDC coin price prediction for 2025, XDC could reach a price of $0.121731 if the upward trend continues. However, if the market experiences a decline, the target might not be met.

Based on these expert opinions, XDC Network can potentially deliver significant returns in the long term. However, as with any investment, conducting thorough research and considering the risks is crucial.

Note - Start Your Free Trial Today and Uncover Your Token's Price Prediction and Forecast on Token Metrics.

XDC Current Developments and Future Potential

XDC Network has been actively working on enhancing its ecosystem and expanding its partnerships. The project aims to provide user-friendly interaction and transparent transactions through its open-source DeFi protocol. 

With the increasing adoption of blockchain technology in various industries, XDC Network can attract more users and investors.

Will XDC Hit $100?

No, considering the current fundamentals and market trends, reaching the $100 mark before 2030 is nearly impossible. 

While it's difficult to predict the precise future price of any cryptocurrency, the likelihood of XDC hitting $100 in the foreseeable future is relatively low. 

However, it's worth noting that the cryptocurrency market is highly volatile, and unexpected events can significantly impact prices.

Also Read - XRP Price Prediction

Conclusion

XDC Network (XDC) has shown promising growth potential, with industry experts predicting a bullish trajectory for its price in the coming years.

While XDC's historical performance and current fundamentals support a positive outlook, it is crucial to remember that investing in cryptocurrencies carries risks. 

Conduct thorough research, assess your risk tolerance, and consult with a financial advisor before making any investment decisions.

Frequently Asked Questions

Q1. Is XDC a good investment in 2025?

Based on the market data and expert opinions, XDC has the potential to be a good investment in 2025. However, conducting thorough research and considering the risks is important before making investment decisions.

Q2. Where can I buy XDC crypto?

XDC is available on several reputable exchanges, including Bitfinex, KuCoin, Huobi, Bittrex, and Gate.io. Choosing a reliable crypto exchange for purchasing XDC is advisable.

Q3. What is the future potential of XDC Network?

XDC Network has a bright future with its hybrid blockchain architecture and focuses on enhancing trade and finance sectors. As blockchain technology continues to gain adoption, XDC Network has the potential to attract more users and investors, further driving its growth.

Q4. Is XDC Network a reliable project?

XDC Network has shown promising growth and has gained recognition in the industry. However, conducting thorough research and assessing the project's fundamentals, team, and partnerships is essential to determine its reliability.

Q5. How can I assess the risk tolerance for investing in XDC?

Assessing your risk tolerance involves considering your investment goals, financial situation, and willingness to accept potential losses. It is advisable to consult with a financial advisor to determine an appropriate risk tolerance level for your investment portfolio.

Q6. What factors can impact the price of XDC?

Several factors can impact the price of XDC, including market sentiment, overall cryptocurrency market conditions, regulatory developments, technological advancements, and adoption rates. It's important to stay informed about these factors and their potential impact on the project.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Conduct your due diligence and consult your financial advisor before making investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Practical Guide to Building and Using REST APIs

Token Metrics Team
6
MIN

REST APIs power much of the modern web: mobile apps, single-page frontends, third-party integrations, and many backend services communicate via RESTful endpoints. This guide breaks down the core principles, design patterns, security considerations, and practical workflows for building and consuming reliable REST APIs. Whether you are evaluating an external API or designing one for production, the frameworks and checklists here will help you ask the right technical questions and set up measurable controls.

What is a REST API and why it matters

REST (Representational State Transfer) is an architectural style for networked applications that uses stateless communication, standard HTTP verbs, and resource-oriented URLs. A REST API exposes resources (users, orders, prices, metadata) as endpoints that clients can retrieve or modify. The simplicity of the model and ubiquity of HTTP make REST a common choice for public APIs and internal microservices.

Key benefits include:

  • Interoperability: Clients and servers can be developed independently as long as they agree on the contract.
  • Scalability: Stateless interactions simplify horizontal scaling and load balancing.
  • Tooling: Broad tool and library support — from Postman to client SDK generators.

Core principles and HTTP methods

Designing a good REST API starts with consistent use of HTTP semantics. The common verbs and their typical uses are:

  • GET — retrieve a representation of a resource; should be safe and idempotent.
  • POST — create a new resource or trigger processing; not idempotent by default.
  • PUT — replace a resource entirely; idempotent.
  • PATCH — apply partial updates to a resource.
  • DELETE — remove a resource.

Good RESTful design also emphasizes:

  • Resource modeling: use nouns for endpoints (/orders, /users/{id}) not verbs.
  • Meaningful status codes: 200, 201, 204, 400, 401, 404, 429, 500 to convey outcomes.
  • HATEOAS (where appropriate): include links in responses to related actions.

Design, documentation, and versioning best practices

Well-documented APIs reduce integration friction and errors. Follow these practical habits:

  1. Start with a contract: define your OpenAPI/Swagger specification before coding. It captures endpoints, data models, query parameters, and error shapes.
  2. Use semantic versioning for breaking changes: /v1/ or header-based versioning helps consumers migrate predictably.
  3. Document error schemas and rate limit behavior clearly so clients can implement backoff and retries.
  4. Support pagination and filtering consistently (cursor-based pagination is more resilient than offset-based for large datasets).
  5. Ship SDKs or client code samples in common languages to accelerate adoption and reduce misuse.

Automate documentation generation and run contract tests as part of CI to detect regressions early.

Security, performance, and monitoring

Security and observability are essential. Practical controls and patterns include:

  • Authentication and authorization: implement OAuth 2.0, API keys, or mutual TLS depending on threat model. Always scope tokens and rotate secrets regularly.
  • Input validation and output encoding to prevent injection attacks and data leaks.
  • Rate limiting, quotas, and request throttling to protect downstream systems during spikes.
  • Use TLS for all traffic and enforce strong cipher suites and certificate pinning where appropriate.
  • Logging, distributed tracing, and metrics: instrument endpoints to measure latency, error rates, and usage patterns. Tools like OpenTelemetry make it easier to correlate traces across microservices.

Security reviews and occasional red-team exercises help identify gaps beyond static checks.

Integrating REST APIs with modern workflows

Consuming and testing REST APIs fits into several common workflows:

  • Exploration: use Postman or curl to verify basic behavior and response shapes.
  • Automation: generate client libraries from OpenAPI specs and include them in CI pipelines to validate integrations automatically.
  • API gateways: centralize authentication, caching, rate limiting, and request shaping to relieve backend services.
  • Monitoring: surface alerts for error budgets and SLA breaches; capture representative traces to debug bottlenecks.

When building sector-specific APIs — for example, price feeds or on-chain data — combining REST endpoints with streaming (webhooks or websockets) can deliver both historical queries and low-latency updates. AI-driven analytics platforms can help synthesize large API outputs into actionable signals and summaries; for example, Token Metrics and similar tools can ingest API data for model-driven analysis without manual aggregation.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common REST API questions

What is the difference between REST and RESTful?

REST describes the architectural constraints and principles. "RESTful" is commonly used to describe APIs that follow those principles, i.e., resource-based design, stateless interactions, and use of standard HTTP verbs.

How should I handle versioning for a public API?

Expose a clear versioning strategy early. Path versioning (/v1/) is explicit and simple, while header or content negotiation can be more flexible. Regardless of approach, document migration timelines and provide backward compatibility where feasible.

When should I use PATCH vs PUT?

Use PUT to replace a resource fully; use PATCH to apply partial updates. PATCH payloads should be well-defined (JSON Patch or application/merge-patch+json) to avoid ambiguity.

What are common pagination strategies?

Offset-based pagination is easy to implement but can produce inconsistent results with concurrent writes. Cursor-based (opaque token) pagination is more robust for large, frequently changing datasets.

How do I test and validate an API contract?

Use OpenAPI specs combined with contract testing tools that validate servers against the spec. Include integration tests in CI that exercise representative workflows and simulate error conditions and rate limits.

How can I secure public endpoints without impacting developer experience?

Apply tiered access controls: provide limited free access with API keys and rate limits for discovery, and require stronger auth (OAuth, signed requests) for sensitive endpoints. Clear docs and quickstart SDKs reduce friction for legitimate users.

What metrics should I monitor for API health?

Track latency percentiles (p50/p95/p99), error rates by status code, request volume, and authentication failures. Correlate these with infrastructure metrics and traces to identify root causes quickly.

Can REST APIs be used with AI models?

Yes. REST APIs can serve as a data ingestion layer for AI workflows, supplying labeled data, telemetry, and features. Combining batch and streaming APIs allows models to access both historical and near-real-time inputs for inference and retraining.

Are there alternatives to REST I should consider?

GraphQL offers flexible client-driven queries and can reduce overfetching, while gRPC provides efficient binary RPC for internal services. Choose based on client needs, performance constraints, and team expertise.

Disclaimer

This article is educational and technical in nature. It does not provide investment, legal, or regulatory advice. Implementations and design choices should be validated against your organization’s security policies and compliance requirements.

Research

Master REST APIs: Design, Security & Integration

Token Metrics Team
5
MIN

REST APIs are the lingua franca of modern web and data ecosystems. Developers, data scientists, and product teams rely on RESTful endpoints to move structured data between services, power mobile apps, and connect AI models to live data sources. This post explains what REST APIs are, the core principles and methods, practical design patterns, security considerations, and how to evaluate REST APIs for use in crypto and AI workflows.

What is a REST API?

Representational State Transfer (REST) is an architectural style for distributed systems. A REST API exposes resources—such as users, orders, or market ticks—via predictable URLs and HTTP methods. Each resource representation is typically transferred in JSON, XML, or other media types. The API defines endpoints, input and output schemas, and expected status codes so clients can programmatically interact with a server.

Key characteristics include stateless requests, cacheable responses when appropriate, uniform interfaces, and resource-oriented URIs. REST is not a protocol but a set of conventions that favor simplicity, scalability, and composability. These properties make REST APIs well-suited for microservices, web clients, and integrations with analytics or machine learning pipelines.

REST Principles and Core HTTP Methods

Understanding the mapping between REST semantics and HTTP verbs is foundational:

  • GET retrieves a resource or collection; it should be safe and idempotent.
  • POST creates or triggers server-side processes and is generally non-idempotent.
  • PUT replaces a resource and is idempotent.
  • PATCH partially updates a resource.
  • DELETE removes a resource and should also be idempotent.

Designing clear resource names and predictable query parameters improves developer experience. Use nouns for endpoints (e.g., /api/v1/orders) and separate filtering, sorting, and pagination parameters. Well-structured response envelopes with consistent error codes and time stamps help automation and observability.

Designing and Securing REST APIs

Good REST API design balances usability, performance, and security. Start with a contract-first approach: define OpenAPI/Swagger schemas that describe endpoints, request/response shapes, authentication, and error responses. Contracts enable auto-generated clients, mock servers, and validation tooling.

Security considerations include:

  • Authentication: Use OAuth 2.0, API keys, or mutual TLS depending on the trust model. Prefer short-lived tokens and refresh flows for user-facing apps.
  • Authorization: Enforce least privilege via roles, scopes, or claims. Validate permissions on every request.
  • Input validation: Validate and sanitize incoming payloads to prevent injection attacks.
  • Rate limiting & throttling: Protect resources from abuse and ensure predictable QoS.
  • Transport security: Enforce TLS, HSTS, and secure cipher suites for all endpoints.

Operational best practices include logging structured events, exposing health and metrics endpoints, and versioning APIs (e.g., v1, v2) to enable backward-compatible evolution. Use semantic versioning in client libraries and deprecate endpoints with clear timelines and migration guides.

Testing, Monitoring, and Performance Optimization

Testing a REST API includes unit tests for business logic, contract tests against OpenAPI definitions, and end-to-end integration tests. Performance profiling should focus on latency tail behavior, not just averages. Key tools and techniques:

  • Automated contract validation (OpenAPI/Swagger)
  • Load testing for realistic traffic patterns (ramp-up, burst, sustained)
  • Circuit breakers and caching layers for downstream resiliency
  • Observability: distributed tracing, structured logs, and metrics for request rates, errors, and latency percentiles

For AI systems, robust APIs must address reproducibility: include schema versioning and event timestamps so models can be retrained with consistent historical data. For crypto-related systems, ensure on-chain data sources and price oracles expose deterministic endpoints and clearly document freshness guarantees.

REST APIs in Crypto and AI Workflows

REST APIs are frequently used to expose market data, on-chain metrics, historical time-series, and signals that feed AI models or dashboards. When integrating third-party APIs for crypto data, evaluate latency, update frequency, and the provider's methodology for derived metrics. Consider fallbacks and reconciliations: multiple independent endpoints can be polled and compared to detect anomalies or outages.

AI agents often consume REST endpoints for feature extraction and live inference. Design APIs with predictable rate limits and batching endpoints to reduce overhead. Document data lineage: indicate when data is fetched, normalized, or transformed so model training and validation remain auditable.

Tools that combine real-time prices, on-chain insights, and signal generation can accelerate prototyping of analytics and agents. For example, Token Metrics provides AI-driven research and analytics that teams can evaluate as part of their data stack when building integrations.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is REST and how does it differ from other API styles?

REST is an architectural style that leverages HTTP methods and resource-oriented URIs. It differs from RPC and SOAP by emphasizing uniform interfaces, statelessness, and resource representations. GraphQL is query-oriented and allows clients to request specific fields, which can reduce over-fetching but requires different server-side handling.

How should I secure a REST API?

Use TLS for transport security, strong authentication (OAuth2, API keys, or mTLS), authorization checks on each endpoint, input validation, rate limiting, and monitoring. Consider short-lived tokens and revoke mechanisms for compromised credentials.

What are best practices for versioning REST APIs?

Adopt explicit versioning (path segments like /v1/), maintain backward compatibility when possible, and provide clear deprecation notices with migration guides. Use semantic versioning for client libraries and contract-first changes to minimize breaking updates.

How do I handle rate limits and throttling?

Implement rate limits per API key or token, and communicate limits via headers (e.g., X-RateLimit-Remaining). Provide exponential backoff guidance for clients and consider burst allowances for intermittent workloads. Monitor usage patterns to adjust thresholds.

What testing and monitoring are essential for production APIs?

Essential practices include unit and contract tests, integration tests, load tests, structured logging, distributed tracing, and alerting on error rates or latency SLA breaches. Health checks and automated failover strategies improve availability.

Disclaimer

This article is for educational and informational purposes only. It does not constitute investment, financial, or legal advice. Evaluate third-party tools and data sources independently and consider compliance requirements relevant to your jurisdiction and project.

Research

Mastering REST APIs: Design, Security & Best Practices

Token Metrics Team
5
MIN

REST APIs are the backbone of modern web services and integrations. Whether you are building internal microservices, public developer APIs, or AI-driven data pipelines, understanding REST principles, security models, and performance trade-offs helps you design maintainable and scalable systems.

What is a REST API and why it matters

REST (Representational State Transfer) is an architectural style that relies on stateless communication, uniform interfaces, and resource-oriented design. A REST API exposes resources—users, orders, metrics—via HTTP methods like GET, POST, PUT, PATCH, and DELETE. The simplicity of HTTP, combined with predictable URIs and standard response codes, makes REST APIs easy to adopt across languages and platforms. For teams focused on reliability and clear contracts, REST remains a pragmatic choice, especially when caching, intermediaries, and standard HTTP semantics are important.

Core design principles for robust REST APIs

Good REST design balances clarity, consistency, and flexibility. Key principles include:

  • Resource-first URLs: Use nouns (e.g., /users/, /invoices/) and avoid verbs in endpoints.
  • Use HTTP semantics: Map methods to actions (GET for read, POST for create, etc.) and use status codes meaningfully.
  • Support filtering, sorting, and pagination: Keep payloads bounded and predictable for large collections.
  • Idempotency: Design PUT and DELETE to be safe to retry; document idempotent behaviors for clients.
  • Consistent error model: Return structured error objects with codes, messages, and actionable fields for debugging.

Documenting these conventions—preferably with an OpenAPI/Swagger specification—reduces onboarding friction and supports automated client generation.

Authentication, authorization, and security considerations

Security is non-negotiable. REST APIs commonly use bearer tokens (OAuth 2.0 style) or API keys for authentication, combined with TLS to protect data in transit. Important practices include:

  • Least privilege: Issue tokens with minimal scopes and short lifetimes.
  • Rotate and revoke keys: Provide mechanisms to rotate credentials without downtime.
  • Input validation and rate limits: Validate payloads server-side and apply throttling to mitigate abuse.
  • Audit and monitoring: Log authentication events and anomalous requests for detection and forensics.

For teams integrating sensitive data or financial endpoints, combining OAuth scopes, robust logging, and policy-driven access control improves operational security while keeping interfaces developer-friendly.

Performance, caching, and versioning strategies

APIs must scale with usage. Optimize for common access patterns and reduce latency through caching, compression, and smart data modeling:

  • Cache responses: Use HTTP cache headers (Cache-Control, ETag) and CDN caching for public resources.
  • Batching and filtering: Allow clients to request specific fields or batch operations to reduce round trips.
  • Rate limiting and quotas: Prevent noisy neighbors from impacting service availability.
  • Versioning: Prefer semantic versioning in the URI or headers (e.g., /v1/) and maintain backward compatibility where possible.

Design decisions should be driven by usage data: measure slow endpoints, understand paginated access patterns, and iterate on the API surface rather than prematurely optimizing obscure cases.

Testing, observability, and AI-assisted tooling

Test automation and telemetry are critical for API resilience. Build a testing pyramid with unit tests for handlers, integration tests for full request/response cycles, and contract tests against your OpenAPI specification. Observability—structured logs, request tracing, and metrics—helps diagnose production issues quickly.

AI-driven tools can accelerate design reviews and anomaly detection. For example, platforms that combine market and on-chain data with AI can ingest REST endpoints and provide signal enrichment or alerting for unusual patterns. When referencing such tools, ensure you evaluate their data sources, explainability, and privacy policies. See Token Metrics for an example of an AI-powered analytics platform used to surface insights from complex datasets.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is a REST API?

A REST API is an interface that exposes resources over HTTP using stateless requests and standardized methods. It emphasizes a uniform interface, predictable URIs, and leveraging HTTP semantics for behavior and error handling.

FAQ: REST vs GraphQL — when to choose which?

REST suits predictable, cacheable endpoints and simple request/response semantics. GraphQL can reduce over-fetching and allow flexible queries from clients. Consider developer experience, caching needs, and operational complexity when choosing between them.

FAQ: How should I version a REST API?

Common approaches include URI versioning (e.g., /v1/) or header-based versioning. The key is to commit to a clear deprecation policy, document breaking changes, and provide migration paths for clients.

FAQ: What are practical security best practices?

Use TLS for all traffic, issue scoped short-lived tokens, validate and sanitize inputs, impose rate limits, and log authentication events. Regular security reviews and dependency updates reduce exposure to known vulnerabilities.

FAQ: Which tools help with testing and documentation?

OpenAPI/Swagger, Postman, and contract-testing frameworks allow automated validations. Observability stacks (Prometheus, Jaeger) and synthetic test suites help catch regressions and performance regressions early.

Disclaimer

This article is for educational and technical guidance only. It does not provide financial, legal, or investment advice. Evaluate tools, platforms, and architectural choices based on your organization’s requirements and compliance constraints.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products