Back to blog
Crypto Basics

What Are Zero Knowledge Proofs and How Does it Work?

Learn everything about zero knowledge proofs and discover how this cutting-edge technology works and reshapes digital space.
S. Vishwa
7 Minutes
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe

In today's data-driven world, privacy and security are of paramount importance. One emerging technology that addresses these concerns is zero-knowledge proofs (ZKPs). 

ZKPs allow for the verification of information without revealing the underlying data, providing a high level of security and privacy. 

This comprehensive guide will explore the fundamentals of zero-knowledge proofs, how they work, their applications, and the benefits they offer. So, let's dive in!

What are Zero-Knowledge Proofs?

Zero-knowledge proofs (ZKPs) are cryptographic protocols that enable one party, known as the prover, to convince another party, the verifier, that a statement is true without revealing any details about the statement itself. 

The concept of zero-knowledge proofs was first introduced in the early 1980s by researchers Shafi Goldwasser, Silvio Micali, and Charles Rackoff.

A good zero-knowledge proof should fulfill three criteria: completeness, soundness, and zero-knowledge. Completeness ensures that the verifier will accept the proof if the statement is true and both parties adhere to the protocol. 

Soundness guarantees that if the statement is false, no dishonest prover can convince an honest verifier otherwise. 

Zero-knowledge ensures that even after engaging with the prover, the verifier only learns the truth of the statement and nothing else about the secret.

How do Zero-Knowledge Proofs Work?

Zero-knowledge proofs allow a prover to persuade a verifier of the validity of a statement without disclosing any information about the statement itself. 

The prover and the verifier engage in multiple rounds of interaction. At the end of the protocol, the verifier gains confidence in the statement's truth without learning any additional information about the secret.

To illustrate how zero-knowledge proofs work, let's consider the "Three Color Problem," also known as the "Graph Coloring Problem." 

The goal is to color each map region with one of three colors so that no neighboring regions have the same color. The prover wants to convince the verifier that they know a valid three-coloring for the given map without revealing the actual colors assigned to each region.

The protocol consists of several rounds: setup, statement, commitment, challenge, response, and iteration. In the setup phase, the prover and verifier agree on the map's regions and connections. In the statement phase, the prover asserts to have a reliable three-coloring for the map. 

The commitment phase involves the prover choosing colors for each region in secret and providing commitments to the verifier without revealing the actual colors. The challenge phase requires the verifier to choose a random region and request the prover to open the commitment for that region, revealing its color. 

The response phase involves the prover proving the accuracy of the revealed coloring by demonstrating the color differences between adjacent regions. The iteration phase repeats the challenge and response steps multiple times to establish a high degree of trust in the validity of the prover's assertion.

Throughout the protocol, the verifier becomes confident that the prover possesses a valid three-coloring without learning the actual colors assigned to each region. 

This exemplifies the zero-knowledge property of the proof, as the verifier gains knowledge about the truth of the statement without obtaining any additional information.

Types of Zero-Knowledge Proofs

There are several types of zero-knowledge proofs, each suited for different use cases. Let's explore some of the most commonly used types:

Interactive Zero-Knowledge Proofs

Interactive zero-knowledge proofs require back-and-forth communication between the prover and verifier. They involve multiple rounds of interaction, as seen in the "Three Color Problem" example.

Non-Interactive Zero-Knowledge Proofs

Non-interactive zero-knowledge proofs provide a compact proof that can be verified in a single step. They eliminate the need for repeated back-and-forth communication between the prover and verifier.

Statistical Zero-Knowledge Proofs

Statistical zero-knowledge proofs offer computational soundness with a small probability of error. They allow for probabilistic verification, making them suitable for scenarios where a small margin of error is acceptable.

Proof-of-Knowledge

Proof-of-knowledge (PoK) is a subclass of zero-knowledge proofs that demonstrates the prover's possession of specific knowledge related to the statement. It shows that the prover knows something without revealing what that something is.

Proofs of Shuffle and Range

Proofs of shuffle and range are used in electronic voting systems and privacy-preserving transactions. They allow for the verification of the correct shuffling of votes or the validation of values falling within a specific range without disclosing the actual votes or values.

Sigma Protocols

Sigma protocols are a class of zero-knowledge proofs that involve three steps: commitment, challenge, and response. They are widely used in various applications, including digital signatures and secure authentication.

Bulletproofs

Bulletproofs are designed to provide efficient range proofs for large sets of values. They enable efficient verification of values within a specified range without revealing the actual values themselves. Bulletproofs have been successfully used in privacy-focused cryptocurrencies such as Monero.

These are just a few examples of the types of zero-knowledge proofs available. Each type has its characteristics and use cases, making zero-knowledge proofs a versatile tool for achieving privacy and security in various domains.

Applications of Zero-Knowledge Proofs

Zero-knowledge proofs find applications in a wide range of fields and address important privacy and security concerns. Let's explore some of the key applications of zero-knowledge proofs:

Privacy-Preserving Cryptocurrencies

One prominent application of zero-knowledge proofs is in privacy-focused cryptocurrencies such as Zcash (ZEC). Zero-knowledge proofs allow for anonymous transactions without revealing the transaction details or the identities of the users. This enhances transaction privacy and confidentiality in blockchain networks.

Authentication and Access Control

Zero-knowledge proofs can be used in authentication and access control systems to demonstrate knowledge of a password or cryptographic key without revealing the actual password or key itself. This provides secure and user-friendly authentication techniques while preserving privacy.

Electronic Voting Systems

Zero-knowledge proofs play a crucial role in electronic voting systems. They enable voters to prove the legitimacy of their vote without disclosing their actual vote. This protects both voter privacy and the integrity of the electoral process.

Secure Data Transfer and Verification

Zero-knowledge proofs allow for secure data transfer and verification. They enable one party to demonstrate the accuracy of computations performed on private data without revealing the data itself. This is particularly useful in scenarios where data privacy is paramount, such as healthcare or financial applications.

Central Bank Digital Currencies (CBDCs)

Zero-knowledge proofs can enhance transaction privacy in central bank digital currencies (CBDCs). Zero-knowledge proofs enable auditability without disclosing transaction specifics by balancing privacy and transparency. This can contribute to adopting and accepting CBDCs while upholding user anonymity.

These are just a few examples of the diverse applications of zero-knowledge proofs. The versatility of zero-knowledge proofs makes them a valuable tool for enhancing privacy, security, and confidentiality in various domains.

Disadvantages of Zero-Knowledge Proofs

While zero-knowledge proofs offer significant benefits, they also come with certain disadvantages. Considering these drawbacks when evaluating the suitability of zero-knowledge proofs for a specific use case is important. Let's explore some of the key disadvantages:

Computational Intensity

Developing and verifying zero-knowledge proofs can be computationally intensive, especially for complex proofs. This can result in longer processing times for transactions and increased computational workload, which may pose challenges for the scalability of blockchain systems.

Complexity and Auditability

Zero-knowledge proofs can add complexity to protocols, making them more difficult to audit and verify. The intricate nature of zero-knowledge proofs may raise concerns about potential security flaws or bugs in the implementation.

Potential for Illegal Activity

While zero-knowledge proofs enhance privacy by hiding information, they may also facilitate illegal activities in certain situations. This poses challenges for regulatory compliance and may require additional measures to prevent misuse of zero-knowledge proofs.

Limited Applicability

Zero-knowledge proofs may not be suitable for all use cases or sectors. They require expertise and experience to implement correctly, which may limit their widespread adoption across different fields.

While zero-knowledge proofs offer valuable privacy and security features, it is essential to carefully assess the associated trade-offs and challenges before incorporating them into specific systems or applications.

Conclusion

Zero-knowledge proofs are a powerful cryptographic tool that enables the verification of information without revealing the underlying data. 

They offer enhanced privacy, security, and confidentiality, making them valuable in various applications. From privacy-focused cryptocurrencies to secure data transfer and authentication, zero-knowledge proofs provide solutions to critical challenges in the digital era. 

However, it is important to consider zero-knowledge proofs' computational intensity, complexity, and potential limitations when evaluating their suitability for specific use cases. 

By leveraging the benefits and addressing the challenges, zero-knowledge proofs can unlock new levels of privacy and security in our increasingly interconnected world.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Conduct your due diligence and consult your financial advisor before making investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
About Token Metrics
Token Metrics: AI-powered crypto research and ratings platform. We help investors make smarter decisions with unbiased Token Metrics Ratings, on-chain analytics, and editor-curated “Top 10” guides. Our platform distills thousands of data points into clear scores, trends, and alerts you can act on.
30 Employees
analysts, data scientists, and crypto engineers
Daily Briefings
concise market insights and “Top Picks”
Transparent & Compliant
Sponsored ≠ Ratings; research remains independent
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Why Manual Crypto Portfolio Management Is Costing You Money (And Time)

Token Metrics Team
6

You're tracking 50+ tokens across three exchanges, updating your rebalancing spreadsheet every weekend, and second-guessing every exit decision at 2 AM. Sound familiar? Manual crypto portfolio management isn't just exhausting—it's expensive. Between missed rebalances, execution drag, and behavioral mistakes during volatility, DIY portfolio management quietly erodes returns before you see any market gains.

The data tells the story: investors who manually manage diversified crypto portfolios typically underperform comparable automated strategies by 12-18% annually, with 60% of that gap coming from operational inefficiency rather than market timing. If you're spending 10+ hours weekly maintaining positions, those hours have a cost—and it's higher than you think.

The Hidden Costs Destroying Your Returns

Time Drain: The 500-Hour Tax

Managing a diversified crypto portfolio demands constant vigilance. For investors holding 20+ positions, the weekly time investment breaks down to approximately:

  • Market monitoring: 5-8 hours tracking prices, news, and on-chain metrics
  • Rebalancing calculations: 2-3 hours determining optimal weights and required trades
  • Order execution: 3-5 hours placing trades across multiple platforms
  • Record keeping: 1-2 hours logging transactions for tax reporting
  • Research updates: 3-5 hours staying current on project developments

That's 14-23 hours weekly, or 728-1,196 hours annually. At a conservative $50/hour opportunity cost, you're spending $36,400-$59,800 in time value maintaining your portfolio. Even if you value your time at minimum wage, that's still $10,000+ in annual "sweat equity" that automated solutions eliminate.

Execution Drag: Death by a Thousand Trades

Small trades erode portfolios through accumulated friction. Every manual rebalance across a 50-token portfolio requires dozens of individual transactions, each incurring:

  • Trading fees: 0.1-0.5% per trade (average 0.25%)
  • Bid-ask spreads: 0.2-0.8% depending on liquidity
  • Slippage: 0.3-1.2% on smaller cap tokens
  • Gas fees: $2-50 per transaction depending on network congestion

For a $100,000 portfolio rebalanced monthly with 40 trades per rebalance, the costs add up:

  • Average cost per trade: ~$100
  • Monthly execution drag: $4,000
  • Annual execution drag: $48,000 (48% of portfolio value)

The smaller your individual trades, the worse the ratio becomes. A $500 rebalancing trade on a low-liquidity altcoin might pay $25 in fees—a 5% instant loss before any price movement.

Automated indices solve this. TM Global 100, Token Metrics' rules-based index, consolidates 100 individual positions into a single transaction at purchase, with weekly rebalances executed through optimized smart contract batching. Users typically save 3-7% annually in execution costs alone compared to manual approaches.

Behavioral Mistakes: Your Worst Enemy Is in the Mirror

Market psychology research shows that manual portfolio managers tend to make predictable, costly mistakes:

  • Panic selling during drawdowns: When Bitcoin drops 25% in a week, can you stick to your exit rules? Many override their plans during high volatility, often selling near local bottoms.
  • FOMO buying at peaks: Tokens up 300% in a week attract chase behavior, with managers entering after the movement is mostly over.
  • Rebalancing procrastination: Putting off rebalancing leads to drift, holding too much of past winners and missing new opportunities.

Token Metrics' systematic approach removes emotion from the equation. The TM Global 100 Index follows a transparent ruleset: hold the top 100 tokens by market cap during bullish phases, shift to stablecoins during bearish cycles, and rebalance weekly—eliminating emotional override and procrastination.

Missed Rebalances: Drifting Out of Position

Market cap rankings shift constantly. A token ranked #73 on Monday might hit #95 by Friday, or surge to #58. Without systematic rebalancing, your portfolio becomes a collection of recent winners or dumpers.

In Q3 2024, Solana ecosystem tokens surged while Ethereum DeFi tokens consolidated. Manual managers who missed weekly rebalances held too much ETH and insufficient SOL exposure. The result: 15-20% underperformance compared to systematically rebalanced portfolios. Data from Token Metrics shows that weekly rebalancing outperforms monthly or quarterly approaches by 8-12% annually.

Tax Reporting Nightmares

Every trade creates a taxable event. Manual managers executing over 200 trades yearly face:

  • Hours spent compiling transaction logs
  • Reconciliation across multiple exchanges
  • Cost-basis tracking for numerous lots
  • High professional accounting fees ($500-2,000+)

Automated solutions like Token Metrics provide transparent transaction logs for each rebalance, simplifying tax reporting and reducing accounting costs.

The Token Metrics Advantage: Research Meets Execution

Token Metrics has established itself as a leading crypto analytics platform, supporting over 50,000 users with AI-powered token ratings, market regime detection, portfolio optimization tools, and trading signals. But analysis alone isn't enough—implementation is crucial.

TM Global 100 Index bridges this gap. It turns research into actionable, tradeable products by automating rebalancing based on Token Metrics' signals and methodology. One click replaces hours of manual work, following a validated systematic approach.

Automation Without Compromise

The best automation is transparent. TM Global 100 offers:

  • Rules-Based Discipline: Bull markets—hold top 100 tokens; bear markets—move to stablecoins
  • Weekly rebalancing every Monday
  • Full methodology disclosure
  • One-Click execution via embedded self-custodial wallet
  • Real-time market insights and holdings visualization
  • Transaction logs with fees and timestamps

This streamlined process allows users to rapidly execute disciplined rebalancing, saving countless hours and increasing operational efficiency while maintaining asset control.

Decision Framework: When to Automate

Automation suits investors who:

  • Hold 15+ tokens and find rebalancing burdensome
  • Miss optimal rebalancing windows due to time constraints
  • Have experienced emotional trading decisions during volatility
  • Spend over 5 hours a week on portfolio management
  • Want broad exposure without manual tracking

Manual management may be suitable for those with fewer positions, active trading infrastructure, or tactical strategies. For most diversified portfolios, automation enhances efficiency and reduces operational errors.

The Compound Effect of Efficiency

Small inefficiencies compound over time. Over five years, a $50,000 portfolio managed manually with a 12% annual return minus 4-2-1% losses yields roughly a 5% net return, ending at about $63,814. A systematic approach with optimizer integration, zero behavioral errors, and regular rebalancing can attain a 13% net return, reaching approximately $92,246—an increase of over $28,000, not counting time saved.

Conclusion: Time Back, Returns Up

Manual crypto portfolio management made sense when portfolios were small and concentrated. Today’s diversified sets require operational discipline to prevent erosion of returns due to execution drag, missed rebalances, and emotional mistakes. Token Metrics built TM Global 100 to turn research into automated, transparent execution, reclaim your time, and boost portfolio discipline—without sacrificing control.

Research

Moonshots API: Discover Breakout Tokens Before the Crowd

Token Metrics Team
5

The biggest gains in crypto rarely come from the majors. They come from Moonshots—fast-moving tokens with breakout potential. The Moonshots API surfaces these candidates programmatically so you can rank, alert, and act inside your product. In this guide, you’ll call /v2/moonshots, display a high-signal list with TM Grade and Bullish tags, and wire it into bots, dashboards, or screeners in minutes. Start by grabbing your key at Get API Key, then Run Hello-TM and Clone a Template to ship fast.

What You’ll Build in 2 Minutes

Why This Matters

Discovery that converts. Users want more than price tickers, they want a curated, explainable list of high-potential tokens. The Moonshots API encapsulates multiple signals into a short list designed for exploration, alerts, and watchlists you can monetize.

Built for builders. The endpoint returns a consistent schema with grade, signal, and context so you can immediately sort, badge, and trigger workflows. With predictable latency and clear filters, you can scale to dashboards, mobile apps, and headless bots without reinventing the discovery pipeline.

Where to Find The Moonshots API

The cURL request for the Moonshots endpoint is displayed in the top right of the API Reference. Grab it and start tapping into the potential!

How It Works (Under the Hood)

The Moonshots endpoint aggregates a set of evidence—often combining TM Grade, signal state, and momentum/volume context—into a shortlist of breakout candidates. Each row includes a symbol, grade, signal, and timestamp, plus optional reason tags for transparency.

For UX, a common pattern is: headline list → token detail where you render TM Grade (quality), Trading Signals (timing), Support/Resistance (risk placement), Quantmetrics (risk-adjusted performance), and Price Prediction scenarios. This enables users to understand why a token was flagged and how to act with risk controls.

Polling vs webhooks. Dashboards typically poll with short-TTL caching. Alerting flows use scheduled jobs or webhooks to smooth traffic and avoid duplicates. Always make notifications idempotent.

Production Checklist

Use Cases & Patterns

Next Steps

FAQs

1) What does the Moonshots API return?

A list of breakout candidates with fields such as symbol, tm_grade, signal (often Bullish/Bearish), optional reason tags, and updated_at. Use it to drive discover tabs, alerts, and watchlists.

2) How fresh is the list? What about latency/SLOs?

The endpoint targets predictable latency and timely updates for dashboards and alerts. Use short-TTL caching and queued jobs/webhooks to avoid bursty polling.

3) How do I use Moonshots in a trading workflow?

Common stack: Moonshots for discovery, Trading Signals for timing, Support/Resistance for SL/TP, Quantmetrics for sizing, and Price Prediction for scenario context. Always backtest and paper-trade first.

4) I saw results like “+241%” and a “7.5% average return.” Are these guaranteed?

No. Any historical results are illustrative and not guarantees of future performance. Markets are risky; use risk management and testing.

5) Can I filter the Moonshots list?

Yes—pass parameters like min_grade, signal, and limit (as supported) to tailor to your audience and keep pages fast.

6) Do you provide SDKs or examples?

REST works with JavaScript and Python snippets above. Docs include quickstarts, Postman collections, and templates—start with Run Hello-TM.

7) Pricing, limits, and enterprise SLAs?

Begin free and scale up. See API plans for rate limits and enterprise options.

Research

Support and Resistance API: Auto-Calculate Smart Levels for Better Trades

Token Metrics Team
4

Most traders still draw lines by hand in TradingView. The support and resistance API from Token Metrics auto-calculates clean support and resistance levels from one request, so your dashboard, bot, or alerts can react instantly. In minutes, you’ll call /v2/resistance-support, render actionable levels for any token, and wire them into stops, targets, or notifications. Start by grabbing your key on Get API Key, then Run Hello-TM and Clone a Template to ship a production-ready feature fast.

What You’ll Build in 2 Minutes

A minimal script that fetches Support/Resistance via /v2/resistance-support for a symbol (e.g., BTC, SOL).

  • A one-liner curl to smoke-test your key.
  • A UI pattern to display nearest support, nearest resistance, level strength, and last updated time.

Next Endpoints to add

  • /v2/trading-signals (entries/exits)
  • /v2/hourly-trading-signals (intraday updates)
  • /v2/tm-grade (single-score context)
  • /v2/quantmetrics (risk/return framing)

Why This Matters

Precision beats guesswork. Hand-drawn lines are subjective and slow. The support and resistance API standardizes levels across assets and timeframes, enabling deterministic stops and take-profits your users (and bots) can trust.

Production-ready by design. A simple REST shape, predictable latency, and clear semantics let you add levels to token pages, automate SL/TP alerts, and build rule-based execution with minimal glue code.

Where to Find

Need the Support and Resistance data? The cURL request for it is in the top right of the API Reference for quick access.

👉 Keep momentum: Get API Key • Run Hello-TM • Clone a Template

How It Works (Under the Hood)

The Support/Resistance endpoint analyzes recent price structure to produce discrete levels above and below current price, along with strength indicators you can use for priority and styling. Query /v2/resistance-support?symbol=<ASSET>&timeframe=<HORIZON> to receive arrays of level objects and timestamps.

Polling vs webhooks. For dashboards, short-TTL caching and batched fetches keep pages snappy. For bots and alerts, use queued jobs or webhooks (where applicable) to avoid noisy, bursty polling—especially around market opens and major events.

Production Checklist

  • Rate limits: Respect plan caps; add client-side throttling.
  • Retries/backoff: Exponential backoff with jitter for 429/5xx; log failures.
  • Idempotency: Make alerting and order logic idempotent to prevent duplicates.
  • Caching: Memory/Redis/KV with short TTLs; pre-warm top symbols.
  • Batching: Fetch multiple assets per cycle; parallelize within rate limits.
  • Threshold logic: Add %-of-price buffers (e.g., alert at 0.3–0.5% from level).
  • Error catalog: Map common 4xx/5xx to actionable user guidance; keep request IDs.
  • Observability: Track p95/p99; measure alert precision (touch vs approach).
  • Security: Store API keys in a secrets manager; rotate regularly.

Use Cases & Patterns

  • Bot Builder (Headless): Use nearest support for stop placement and nearest resistance for profit targets. Combine with /v2/trading-signals for entries/exits and size via Quantmetrics (volatility, drawdown).
  • Dashboard Builder (Product): Add a Levels widget to token pages; badge strength (e.g., High/Med/Low) and show last touch time. Color the price region (below support, between levels, above resistance) for instant context.
  • Screener Maker (Lightweight Tools): “Close to level” sort: highlight tokens within X% of a strong level. Toggle alerts for approach vs breakout events.
  • Risk Management: Create policy rules like “no new long if price is within 0.2% of strong resistance.” Export daily level snapshots for audit/compliance.

Next Steps

  • Get API Key — generate a key and start free.
  • Run Hello-TM — verify your first successful call.
  • Clone a Template — deploy a levels panel or alerts bot today.
  • Watch the demo: Compare plans: Scale confidently with API plans.

FAQs

1) What does the Support & Resistance API return?

A JSON payload with arrays of support and resistance levels for a symbol (and optional timeframe), each with a price and strength indicator, plus an update timestamp.

2) How timely are the levels? What are the latency/SLOs?

The endpoint targets predictable latency suitable for dashboards and alerts. Use short-TTL caching for UIs, and queued jobs or webhooks for alerting to smooth traffic.

3) How do I trigger alerts or trades from levels?

Common patterns: alert when price is within X% of a level, touches a level, or breaks beyond with confirmation. Always make downstream actions idempotent and respect rate limits.

4) Can I combine levels with other endpoints?

Yes—pair with /v2/trading-signals for timing, /v2/tm-grade for quality context, and /v2/quantmetrics for risk sizing. This yields a complete decide-plan-execute loop.

5) Which timeframe should I use?

Intraday bots prefer shorter horizons; swing/position dashboards use daily or higher-timeframe levels. Offer a timeframe toggle and cache results per setting.

6) Do you provide SDKs or examples?

Use the REST snippets above (JS/Python). The docs include quickstarts, Postman collections, and templates—start with Run Hello-TM.

7) Pricing, limits, and enterprise SLAs?

Begin free and scale as you grow. See API plans for rate limits and enterprise SLA options.

Disclaimer

This content is for educational purposes only and does not constitute financial advice. Always conduct your own research before making any trading decisions.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products