Crypto Basics

What Are Zero Knowledge Proofs and How Does it Work?

Learn everything about zero knowledge proofs and discover how this cutting-edge technology works and reshapes digital space.
S. Vishwa
7 Minutes
MIN

In today's data-driven world, privacy and security are of paramount importance. One emerging technology that addresses these concerns is zero-knowledge proofs (ZKPs). 

ZKPs allow for the verification of information without revealing the underlying data, providing a high level of security and privacy. 

This comprehensive guide will explore the fundamentals of zero-knowledge proofs, how they work, their applications, and the benefits they offer. So, let's dive in!

What are Zero-Knowledge Proofs?

Zero-knowledge proofs (ZKPs) are cryptographic protocols that enable one party, known as the prover, to convince another party, the verifier, that a statement is true without revealing any details about the statement itself. 

The concept of zero-knowledge proofs was first introduced in the early 1980s by researchers Shafi Goldwasser, Silvio Micali, and Charles Rackoff.

A good zero-knowledge proof should fulfill three criteria: completeness, soundness, and zero-knowledge. Completeness ensures that the verifier will accept the proof if the statement is true and both parties adhere to the protocol. 

Soundness guarantees that if the statement is false, no dishonest prover can convince an honest verifier otherwise. 

Zero-knowledge ensures that even after engaging with the prover, the verifier only learns the truth of the statement and nothing else about the secret.

How do Zero-Knowledge Proofs Work?

Zero-knowledge proofs allow a prover to persuade a verifier of the validity of a statement without disclosing any information about the statement itself. 

The prover and the verifier engage in multiple rounds of interaction. At the end of the protocol, the verifier gains confidence in the statement's truth without learning any additional information about the secret.

To illustrate how zero-knowledge proofs work, let's consider the "Three Color Problem," also known as the "Graph Coloring Problem." 

The goal is to color each map region with one of three colors so that no neighboring regions have the same color. The prover wants to convince the verifier that they know a valid three-coloring for the given map without revealing the actual colors assigned to each region.

The protocol consists of several rounds: setup, statement, commitment, challenge, response, and iteration. In the setup phase, the prover and verifier agree on the map's regions and connections. In the statement phase, the prover asserts to have a reliable three-coloring for the map. 

The commitment phase involves the prover choosing colors for each region in secret and providing commitments to the verifier without revealing the actual colors. The challenge phase requires the verifier to choose a random region and request the prover to open the commitment for that region, revealing its color. 

The response phase involves the prover proving the accuracy of the revealed coloring by demonstrating the color differences between adjacent regions. The iteration phase repeats the challenge and response steps multiple times to establish a high degree of trust in the validity of the prover's assertion.

Throughout the protocol, the verifier becomes confident that the prover possesses a valid three-coloring without learning the actual colors assigned to each region. 

This exemplifies the zero-knowledge property of the proof, as the verifier gains knowledge about the truth of the statement without obtaining any additional information.

Types of Zero-Knowledge Proofs

There are several types of zero-knowledge proofs, each suited for different use cases. Let's explore some of the most commonly used types:

Interactive Zero-Knowledge Proofs

Interactive zero-knowledge proofs require back-and-forth communication between the prover and verifier. They involve multiple rounds of interaction, as seen in the "Three Color Problem" example.

Non-Interactive Zero-Knowledge Proofs

Non-interactive zero-knowledge proofs provide a compact proof that can be verified in a single step. They eliminate the need for repeated back-and-forth communication between the prover and verifier.

Statistical Zero-Knowledge Proofs

Statistical zero-knowledge proofs offer computational soundness with a small probability of error. They allow for probabilistic verification, making them suitable for scenarios where a small margin of error is acceptable.

Proof-of-Knowledge

Proof-of-knowledge (PoK) is a subclass of zero-knowledge proofs that demonstrates the prover's possession of specific knowledge related to the statement. It shows that the prover knows something without revealing what that something is.

Proofs of Shuffle and Range

Proofs of shuffle and range are used in electronic voting systems and privacy-preserving transactions. They allow for the verification of the correct shuffling of votes or the validation of values falling within a specific range without disclosing the actual votes or values.

Sigma Protocols

Sigma protocols are a class of zero-knowledge proofs that involve three steps: commitment, challenge, and response. They are widely used in various applications, including digital signatures and secure authentication.

Bulletproofs

Bulletproofs are designed to provide efficient range proofs for large sets of values. They enable efficient verification of values within a specified range without revealing the actual values themselves. Bulletproofs have been successfully used in privacy-focused cryptocurrencies such as Monero.

These are just a few examples of the types of zero-knowledge proofs available. Each type has its characteristics and use cases, making zero-knowledge proofs a versatile tool for achieving privacy and security in various domains.

Applications of Zero-Knowledge Proofs

Zero-knowledge proofs find applications in a wide range of fields and address important privacy and security concerns. Let's explore some of the key applications of zero-knowledge proofs:

Privacy-Preserving Cryptocurrencies

One prominent application of zero-knowledge proofs is in privacy-focused cryptocurrencies such as Zcash (ZEC). Zero-knowledge proofs allow for anonymous transactions without revealing the transaction details or the identities of the users. This enhances transaction privacy and confidentiality in blockchain networks.

Authentication and Access Control

Zero-knowledge proofs can be used in authentication and access control systems to demonstrate knowledge of a password or cryptographic key without revealing the actual password or key itself. This provides secure and user-friendly authentication techniques while preserving privacy.

Electronic Voting Systems

Zero-knowledge proofs play a crucial role in electronic voting systems. They enable voters to prove the legitimacy of their vote without disclosing their actual vote. This protects both voter privacy and the integrity of the electoral process.

Secure Data Transfer and Verification

Zero-knowledge proofs allow for secure data transfer and verification. They enable one party to demonstrate the accuracy of computations performed on private data without revealing the data itself. This is particularly useful in scenarios where data privacy is paramount, such as healthcare or financial applications.

Central Bank Digital Currencies (CBDCs)

Zero-knowledge proofs can enhance transaction privacy in central bank digital currencies (CBDCs). Zero-knowledge proofs enable auditability without disclosing transaction specifics by balancing privacy and transparency. This can contribute to adopting and accepting CBDCs while upholding user anonymity.

These are just a few examples of the diverse applications of zero-knowledge proofs. The versatility of zero-knowledge proofs makes them a valuable tool for enhancing privacy, security, and confidentiality in various domains.

Disadvantages of Zero-Knowledge Proofs

While zero-knowledge proofs offer significant benefits, they also come with certain disadvantages. Considering these drawbacks when evaluating the suitability of zero-knowledge proofs for a specific use case is important. Let's explore some of the key disadvantages:

Computational Intensity

Developing and verifying zero-knowledge proofs can be computationally intensive, especially for complex proofs. This can result in longer processing times for transactions and increased computational workload, which may pose challenges for the scalability of blockchain systems.

Complexity and Auditability

Zero-knowledge proofs can add complexity to protocols, making them more difficult to audit and verify. The intricate nature of zero-knowledge proofs may raise concerns about potential security flaws or bugs in the implementation.

Potential for Illegal Activity

While zero-knowledge proofs enhance privacy by hiding information, they may also facilitate illegal activities in certain situations. This poses challenges for regulatory compliance and may require additional measures to prevent misuse of zero-knowledge proofs.

Limited Applicability

Zero-knowledge proofs may not be suitable for all use cases or sectors. They require expertise and experience to implement correctly, which may limit their widespread adoption across different fields.

While zero-knowledge proofs offer valuable privacy and security features, it is essential to carefully assess the associated trade-offs and challenges before incorporating them into specific systems or applications.

Conclusion

Zero-knowledge proofs are a powerful cryptographic tool that enables the verification of information without revealing the underlying data. 

They offer enhanced privacy, security, and confidentiality, making them valuable in various applications. From privacy-focused cryptocurrencies to secure data transfer and authentication, zero-knowledge proofs provide solutions to critical challenges in the digital era. 

However, it is important to consider zero-knowledge proofs' computational intensity, complexity, and potential limitations when evaluating their suitability for specific use cases. 

By leveraging the benefits and addressing the challenges, zero-knowledge proofs can unlock new levels of privacy and security in our increasingly interconnected world.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Conduct your due diligence and consult your financial advisor before making investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Crypto Basics

Can AI or Data Tools Help Identify Moonshots?

Token Metrics Team
8 min
MIN

From Hype to Science — The Role of AI in Finding Moonshots

In the past, finding a 100x moonshot often meant trolling crypto Twitter threads, scanning Discord servers, or jumping into Telegram groups filled with bots and hype. But times have changed. In 2025, the smartest investors use AI and data analytics tools to uncover hidden gems before they explode.

This blog explores how AI and crypto-specific data platforms like Token Metrics are transforming moonshot discovery into a science — removing the guesswork and helping investors spot massive opportunities early.

Why Human-Only Research Isn’t Enough Anymore

With over 2 million crypto tokens and hundreds launching weekly, it’s virtually impossible to manually research everything. Retail traders are often overwhelmed, relying on gut feelings or influencer tweets.

AI levels the playing field by:

  • Analyzing massive datasets at scale
  • Spotting hidden patterns in price, volume, and sentiment
  • Scoring tokens based on fundamentals, momentum, and risk
  • Filtering out noise, scams, and pump-and-dumps

Simply put, AI sees what the human eye misses.

How AI Tools Detect Moonshots

AI models trained on crypto data can identify early-stage projects by analyzing:

These insights allow you to rank tokens and prioritize research efforts.

How Token Metrics AI Grades Work

Token Metrics, a pioneer in AI-driven crypto analytics, uses machine learning to generate Investor Grades, Trader Grades, and Bullish/Bearish Signals for thousands of tokens.

Here's how:

  • Investor Grade – Long-term potential based on fundamentals, community, tech
  • Trader Grade – Short-term potential based on price action, momentum, liquidity
  • Bullish Signal – Triggered when AI detects high-probability upside within 7–14 days
  • Bearish Signal – Warns of likely downturns or profit-taking zones

Moonshots that rank highly across these metrics are often early movers with breakout potential.

Top Tools to Find Moonshots with AI & Data

Use these tools together to spot patterns others miss.

Case Study: AI Spotting a Moonshot Early

Let’s say a low-cap AI token called NeuroLink AI launches. It’s not yet on CEXs but shows:

  • Spike in GitHub commits
  • Surge in Telegram growth
  • 24h price up 18%, volume 400%
  • Mentioned in 3 Token Metrics Bullish Signals in one week
  • AI Trader Grade: 91/100

That’s a prime moonshot candidate worth further analysis — and most retail traders wouldn’t catch it until it’s up 5x.

Human + AI = The Winning Formula

AI doesn't replace human judgment — it enhances it. The best approach is:

  1. Use AI to scan, sort, and filter top candidates
  2. Manually research the top 5–10 picks
  3. Evaluate community, product, team, and roadmap
  4. Use risk metrics and technicals for entry/exit planning

This hybrid approach minimizes FOMO and maximizes precision.

Moonshot AI Checklist

Before diving in, check:

âś… High AI Trader or Investor Grade (85+)
âś… Momentum score surging
âś… Early-stage narrative (AI, DePIN, RWA, etc.)
âś… Community growth across socials
âś… Smart money inflows on-chain
âś… No major unlocks in next 30 days

If all boxes are ticked, you may have found your next 10x.

Final Thoughts: AI is the Ultimate Edge in 2025

Crypto moonshots are no longer found in meme threads and TikTok videos alone. In 2025, the best investors use AI-powered research to systematically uncover explosive opportunities before they go viral.

By leveraging platforms like Token Metrics, you turn chaos into clarity — and emotion into execution.

Announcements

How to Build On-Chain Crypto Trading Bots Using Token Metrics Crypto API and Chainlink Functions

Token Metrics Team
8 min
MIN

In the evolving world of Web3 development, the need for real-time, reliable, and institutional-grade crypto data has never been greater. Whether you’re building decentralized trading bots, DeFi apps, or smart contract platforms, accessing powerful off-chain data is key to creating intelligent and profitable on-chain systems.

That’s where the Token Metrics Crypto API comes in.

In this guide, we’ll walk you through how to integrate the Token Metrics API with Chainlink Functions, enabling you to deploy live smart contracts that interact with real-time crypto signals, token prices, and trader grades. You’ll learn how to use more than 20 API endpoints and smart contract adapters to power decentralized apps with actionable data.

If you’re searching for the best crypto API for smart contract development, or you need a free crypto API to start testing on testnets, this article is your ultimate resource.

What Is the Token Metrics Crypto API?

The Token Metrics API is an advanced data interface designed for traders, developers, and Web3 builders. It provides access to over 20 endpoints covering everything from:

  • Token prices
  • AI-powered trading signals (bullish/bearish)
  • Trader and Investor Grades (0–100 scoring system)
  • Quant metrics
  • Support and resistance levels
  • Sentiment analysis

Built by a team of quant analysts, machine learning engineers, and crypto-native researchers, the Token Metrics Crypto API brings hedge-fund-grade intelligence into the hands of everyday builders.

Why Use the Token Metrics API with Chainlink Functions?

Chainlink Functions enable smart contracts to securely retrieve off-chain data from any API. By integrating with the Token Metrics Crypto API, you can bridge institutional-grade analytics into fully decentralized apps—something not possible with basic or unreliable data sources.

Here’s why this combo is so powerful:

  • đź”— Chainlink decentralizes your execution
  • đź§  Token Metrics powers your logic with predictive analytics
  • ⚙️ Smart contracts can now act on real market intelligence

This integration enables the creation of intelligent trading bots, dynamic token allocations, and governance proposals backed by hard data—not speculation.

Step-by-Step: How to Integrate Token Metrics API with Chainlink Functions

Let’s walk through how to connect the best crypto API—Token Metrics—with Chainlink Functions to build and deploy a live smart contract.

1. Clone the GitHub Repo

Start by cloning the GitHub repository that contains the full codebase. This includes:

  • A set of ~20 pre-built smart contracts
  • API adapter logic
  • Sample scripts to interact with the contracts
  • A detailed README with setup instructions

Each smart contract is tailored to one Token Metrics API endpoint—meaning you can plug and play any dataset, from prices to sentiment scores.

2. Set Up Your Environment

The README provides a full list of recommended environment variables, including:

  • API_KEY for Token Metrics
  • LINK_TOKEN_ADDRESS
  • CHAINLINK_SUBSCRIPTION_ID
  • ORACLE_ADDRESS

Once your .env is ready, you can start compiling and deploying.

3. Build and Deploy a Sample Trading Bot Smart Contract

In this walkthrough, the developer built a Solidity smart contract that:

  • Pulls live data from Token Metrics (price, signal, grade)
  • Evaluates the signal (e.g., bullish)
  • Executes a buy trade if the signal is positive

The contract is compiled in Remix IDE, connected via MetaMask (on testnet), and deployed using testnet ETH and LINK tokens.

After deployment, you’ll receive a contract address that can be added to your Chainlink subscription.

4. Create a Chainlink Subscription

To fund your contract for data requests:

  1. Go to the Chainlink portal
  2. Create a new subscription (testnet or mainnet)
  3. Fund it with some LINK
  4. Add your deployed smart contract as a consumer

This allows your contract to make external data calls using Chainlink’s decentralized oracle network.

5. Run a Script to Invoke Real-Time Token Metrics Data

Using the provided JavaScript scripts, you can interact with the smart contract and test data flow:

  • Check the bot’s active status
  • Retrieve token price, trading signal, and grade
  • See how the smart contract responds to live market conditions

In the demo, the bot received a bullish signal, saw that the grade was high, and executed a buy trade accordingly. This logic can be expanded into full-scale trading strategies, rebalancing rules, or even on-chain governance triggers.

Why Token Metrics API Is the Best Crypto API for Smart Contracts

Here’s what makes the Token Metrics Crypto API the best crypto API for building advanced, data-driven dApps:

âś… Institutional-Grade Signals

Get access to proprietary AI trading signals, used by hedge funds and institutional desks.

âś… 20+ Endpoints for Every Use Case

Whether you need sentiment data, grades, price trends, or quant models, it’s all there.

âś… Real-Time and Back-Tested

The data is not just live—it’s tested. Token Metrics backtests every signal against market conditions.

âś… Easy to Integrate

Pre-built smart contract adapters make it easy to use the API in Chainlink, Remix, or any EVM-compatible environment.

âś… Free Crypto API Tier Available

Start testing on testnets with a free crypto API key. Upgrade later for full production access.

Real-World Use Cases for Token Metrics + Chainlink Functions

Here are some examples of what you can build using this integration:

  • On-Chain Trading Bots: React to bullish or bearish signals in real time
  • Decentralized Rebalancing Strategies: Adjust token allocations based on trader grades
  • Token Governance: Trigger proposal alerts when sentiment crosses a threshold
  • Risk Management Contracts: Move funds to stablecoins when volatility spikes
  • NFT Floor Price Triggers: Use sentiment and price data for automated mint/pass logic

Final Thoughts: The Future of Crypto Intelligence Is On-Chain

As Web3 matures, the ability to combine decentralized execution with centralized intelligence will define the next generation of dApps. The integration of Token Metrics Crypto API with Chainlink Functions is a major step in that direction.

Developers can now build on-chain applications that make smarter, faster, and more profitable decisions—powered by data that was once out of reach.

Whether you're a DeFi developer, a DAO engineer, or just exploring your first smart contract, this setup gives you a free crypto API to experiment with and the power of the best crypto API when you're ready to scale.

🚀 Ready to Get Started?

  • âś… Get your free Token Metrics API key
  • âś… Clone the GitHub repo and install the smart contracts
  • âś… Join the Token Metrics Dev Telegram community
  • âś… Start building intelligent, AI-powered crypto applications today

Your next-generation crypto trading bot starts here.

Crypto Basics

How Risky Are Moonshot Investments?

Token Metrics Team
8 min
MIN

 Introduction: The High Stakes of Moonshot Crypto

Moonshot investing in crypto is a double-edged sword. On one side, you have tokens that can 10x, 50x, or even 100x your portfolio. On the other side? Complete capital loss. While these asymmetric bets can lead to explosive profits, they also carry extreme risk—especially for uninformed or impulsive investors.

This guide will break down the risk landscape of moonshots: what makes them so volatile, common pitfalls to avoid, risk management strategies, and how tools like Token Metrics help reduce blind spots when betting on the next big thing.

What Makes Moonshot Investments So Risky?

Moonshots live in the outer rim of the crypto market. They are typically:

  • Low market cap (<$20M)
  • Light on liquidity
  • Not listed on major exchanges
  • Lacking product-market fit
  • Speculative or narrative-driven

These factors create an environment where price moves fast—but fundamentals are often thin. You're betting more on potential than proof.

Common Risks in Moonshot Investing

‍

‍

You must assume every moonshot has some of these risk factors — and plan accordingly.

Risk Profile: Moonshots vs. Blue Chips

‍

‍

Moonshots = high variance. Don’t treat them like stable assets.

🛡️ How to Manage Moonshot Risk (and Stay Sane)

  1. Use Proper Position Sizing
    Never allocate more than 1–3% of your total portfolio to a single moonshot.

  2. Diversify Your Moonshots
    Build a “moonshot basket” of 5–10 different bets across categories (AI, DePIN, L1s, Meme, etc).

  3. Set Clear Entry and Exit Plans
    Know your take-profit and stop-loss targets before entering.

  4. Track Vesting & Unlock Schedules
    Use tools like Token Unlocks to avoid buying before big token dumps.

  5. Don’t Fall in Love With Your Bags
    Stay objective. Exit when the narrative fades or fundamentals change.

đź§Ş Risk Evaluation Checklist

If you answer “no” to 2 or more of these, tread cautiously.

How Token Metrics Minimizes Risk Exposure

Token Metrics helps de-risk moonshots by analyzing over 80+ data points using AI and quant models:

  • Risk-adjusted momentum scores
  • Tokenomics evaluations
  • On-chain behavior analysis
  • Contract audit status
  • Community health signals
  • Bullish/Bearish alerts based on AI

You get a comprehensive view of upside and downside before making a decision.

Mental Models for Risky Investing

  • “Play with house money” – Take profits early and only risk profits.
  • “Barbell strategy” – Majority in stable assets, small % in high-risk/high-reward.
  • “Expected Value (EV)” – Even if 8/10 fail, 1 big win covers losses.
  • “Don’t chase losses” – Accept failures quickly and move on.

Moonshot investing is mental warfare. Stick to frameworks, not FOMO.

Final Thoughts: Risk is Inevitable — Manage It, Don’t Fear It

The path to 100x gains in crypto will always be riddled with landmines. But risk isn’t inherently bad — it’s the price of asymmetric upside. The real danger is unmanaged risk, impulsive decisions, and poor research.

With the right approach, the right tools, and a clear head, moonshot investing can be one of the most rewarding strategies in crypto.

Just remember: You only need to be right once.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products