Crypto Basics

What are ERC20 Tokens and How Does it Work?

Discover the inner workings of ERC20 tokens in this comprehensive guide. Uncover how these tokens power the world of decentralized finance.
Marcus K
10 Minutes
MIN

Cryptocurrencies have revolutionized the way we think about digital assets and transactions. Among the many innovations in the blockchain space, ERC20 tokens have emerged as a prominent standard for creating and managing tokens on the Ethereum blockchain. 

In this comprehensive guide, we will explore what ERC20 tokens are, their history, how they work, their importance and impact, advantages and disadvantages, and provide a list of top ERC20 tokens. So, let's dive in and unravel the fascinating world of ERC20 tokens.

What is ERC20?

ERC20 stands for Ethereum Request for Comment 20 and is the technical standard for creating fungible tokens on the Ethereum blockchain. 

Unlike non-fungible tokens (NFTs), which are unique and not interchangeable, ERC20 tokens are fungible, meaning they can be exchanged on a one-to-one basis with other tokens of the same type. 

These tokens represent assets, rights, ownership, access, or even cryptocurrencies that are not unique in themselves but can be transferred.

The ERC20 standard enables developers to create smart-contract-enabled tokens that can be used with various products and services. 

Since its implementation, most tokens in the Ethereum ecosystem have been created using the ERC20 standard, making it a crucial part of the Ethereum blockchain's functionality.

History of ERC20

To understand the significance of ERC20 tokens, let's look at their history. In 2015, as smart contracts gained popularity, developers realized the need for a standardized token methodology within the Ethereum ecosystem. 

Each application would require its own token without a standard, leading to interoperability issues and difficulties in exchanging tokens between different applications.

To address this problem, developer Fabian Vogelsteller proposed the ERC20 standard 2015 through the Ethereum Request for Comment (ERC) process on the project's Github page. 

The proposal, initially known as ERC-20 due to its designation as the twentieth comment, was later approved and implemented as Ethereum Improvement Proposal 20 (EIP-20) in 2017.

The approval and implementation of the ERC20 standard ensured that all smart contract tokens implemented on the Ethereum blockchain would adhere to the same set of rules, making them compatible and easily exchangeable.

How Does ERC20 Work?

To understand how ERC20 tokens work, let's delve into their underlying structure and functionality. ERC20 tokens consist of a list of functions and events that must be implemented in a token's smart contract to be considered ERC20 compliant.

ERC20 Functions

The ERC20 standard defines six mandatory functions that a token must have:

  • TotalSupply: This function returns the total number of tokens ever issued.
  • BalanceOf: The BalanceOf function allows users to check the balance of a specific token owner's account.
  • Transfer: The Transfer function automatically transfers a specified number of tokens to a designated address.
  • TransferFrom: This function allows the automatic transfer of a specified number of tokens from one address to another.
  • Approve: The Approve function grants permission to a designated address to withdraw a specific number of tokens from the token owner's account.
  • Allowance: The Allowance function returns the number of tokens approved for withdrawal by a spender from the token owner's account.

These functions provide a standard interface for ERC20 tokens, allowing them to be easily accessed, recognized, and used within the Ethereum ecosystem.

ERC20 Events

In addition to functions, ERC20 tokens also include two mandatory events:

  • Transfer: The Transfer event is triggered when a transfer of tokens is successfully executed.
  • Approval: The Approval event logs the approval of a specific address to spend a certain number of tokens.

These events help keep track of token transfers and approvals within the blockchain.

Optional ERC20 Features

Although the six functions and two events mentioned above are mandatory for ERC20 compliance, token developers can include additional features to enhance the token's usability. These optional features include:

  • Token Name: Tokens can have a name that represents their identity.
  • Token Symbol: Tokens can have a symbol as a shorthand representation of their name.
  • Decimal Points: Tokens can have decimal points to allow for fractional values.

Including these optional features provides more information and clarity about the token, making it easier for users to understand and interact.

The Importance and Impact of ERC20

The ERC20 standard has profoundly impacted the blockchain and cryptocurrency industry. Its importance lies in the fact that it introduced a standardized framework for creating tokens on the Ethereum blockchain, fostering interoperability and compatibility among different tokens and applications. Let's explore some key reasons why ERC20 is significant.

Interoperability and Compatibility

By adhering to the ERC20 standard, tokens built on the Ethereum blockchain can seamlessly interact with other tokens and smart contracts within the ecosystem. 

This interoperability allows for the creating of decentralized applications (DApps) and services that can leverage a wide range of tokens without the need for custom integrations.

Token Creation Simplification

The ERC20 standard simplifies creating tokens by providing well-defined rules and functions. Developers can focus on implementing their tokens' specific features and functionalities without worrying about compatibility issues. 

This simplification has contributed to the rapid growth of the Ethereum ecosystem and the proliferation of ERC20 tokens.

Increased Liquidity and Market Access

ERC20 tokens' compatibility and interchangeability have significantly increased their liquidity and market access. Token holders can easily trade ERC20 tokens on decentralized exchanges (DEXs) and various cryptocurrency platforms, providing them with a broader range of investment and trading opportunities.

Crowdfunding and Initial Coin Offerings (ICOs)

The ERC20 standard has played a crucial role in the rise of ICOs and token crowdfunding. By providing a standardized token creation framework, ERC20 empowered startups and projects to efficiently launch their own tokens and raise funds from a global audience. 

This democratization of fundraising has opened up new avenues for innovation and entrepreneurship.

The impact of ERC20 can be seen in the broad adoption of tokens built on the Ethereum blockchain. Let's explore some of the top ERC20 tokens that have gained prominence in the market.

List of Top ERC20 Tokens

ERC20 tokens have gained significant traction in the cryptocurrency market. Here are some of the top ERC20 tokens by market capitalization:

Tether (USDT): Tether is a stablecoin that aims to maintain a 1:1 ratio with the US dollar, providing stability in the volatile cryptocurrency market.

USD Coin (USDC): USD Coin is another stablecoin pegged to the US dollar, offering stability and liquidity for digital asset transactions.

Shiba Inu (SHIB): Shiba Inu is an experimental cryptocurrency inspired by the meme culture surrounding the Shiba Inu dog breed.

Binance USD (BUSD): Binance USD is a stablecoin created by Binance, one of the largest cryptocurrency exchanges globally, providing stability and convenience for trading.

Binance Coin (BNB): Binance Coin is the native cryptocurrency of the Binance exchange and is widely used for trading fee discounts and participation in token sales.

DAI Stablecoin (DAI): DAI is a decentralized stablecoin that aims to maintain a 1:1 ratio with the US dollar through an algorithmic stabilization mechanism.

HEX (HEX): HEX is a blockchain-based certificate of deposit (CD) designed to reward token holders with interest for holding their tokens for a specific period.

Bitfinex LEO (LEO): Bitfinex LEO is the native utility token of the Bitfinex exchange, providing various benefits and discounts to its holders.

Maker (MKR): Maker is a governance token used in the MakerDAO protocol, which enables users to create and manage the stablecoin DAI.

These are just a few examples of the many ERC20 tokens that have gained popularity and utility in the blockchain ecosystem. The diverse range of use cases and functionalities offered by ERC20 tokens highlight their versatility and potential.

Advantages of ERC20 Tokens

ERC20 tokens offer several advantages that have contributed to their widespread adoption. Let's explore some of the key advantages:

  • Standardization: The ERC20 standard provides a uniform set of rules and functions, ensuring that all tokens built on the Ethereum blockchain adhere to the same standards. This standardization simplifies token development and improves user experience.
  • Smart Contract Functionality: ERC20 tokens can leverage the power of smart contracts to automate and execute complex transactions, enabling features such as automatic transfers, approvals, and more.
  • Crowdfunding and Fundraising: The ERC20 standard has facilitated the rise of token crowdfunding and ICOs, allowing startups and projects to raise funds globally in a decentralized manner.
  • Ecosystem Integration: ERC20 tokens can seamlessly integrate with other Ethereum-based services, such as decentralized finance (DeFi) protocols, lending platforms, and prediction markets, expanding their utility and potential use cases.

These advantages have made ERC20 tokens a preferred choice for token creation and have paved the way for growth and innovation within the Ethereum ecosystem.

Disadvantages of ERC20 Tokens

While ERC20 tokens offer numerous advantages, it's essential to consider their limitations and potential drawbacks. Here are some disadvantages associated with ERC20 tokens:

  • Scalability Challenges: The Ethereum blockchain's scalability limitations can affect the performance of ERC20 tokens during periods of high network congestion, leading to slower transactions and higher fees.
  • Smart Contract Vulnerabilities: Smart contracts powering ERC20 tokens are susceptible to hacks and vulnerabilities. Any bugs or vulnerabilities in the smart contract code can result in the loss of funds or token theft.
  • Limited Token Functionality: ERC20 tokens have predefined functions and events, which might not cover all possible token functionalities. Tokens with complex functionalities require custom token standards or modifications to the ERC20 standard.
  • Lack of Regulatory Compliance: ERC20 tokens, like other cryptocurrencies, operate in a regulatory gray area in many jurisdictions. Compliance with evolving regulations can be challenging for token issuers and holders.

It's crucial for token developers and users to be aware of these limitations and take appropriate measures to mitigate associated risks.

Frequently Asked Questions

Q1. What is the difference between ERC20 and ETH? 

Ether (ETH) is the native cryptocurrency of the Ethereum blockchain and network, used as a payment system for verifying transactions. ERC20 refers to the standard for creating smart contract-enabled fungible tokens on the Ethereum blockchain.

Q2. What is an ERC20 wallet? 

An ERC20 wallet is a digital wallet that allows users to store, manage, and interact with ERC20 tokens. It provides an interface for users to view token balances, send and receive tokens, and interact with decentralized applications.

Q3. Can ERC20 tokens be exchanged for other cryptocurrencies? 

ERC20 tokens can be exchanged for other cryptocurrencies on various exchanges and trading platforms supporting ERC20 tokens.

Q4. Are all cryptocurrencies ERC20 tokens?

No, not all cryptocurrencies are ERC20 tokens. While ERC20 tokens are cryptocurrencies, not all cryptocurrencies follow the ERC20 standard. ERC20 tokens specifically pertain to tokens built on the Ethereum blockchain.

Q5. Can ERC20 tokens be used for crowdfunding or raising funds?

The ERC20 standard has been widely used for initial coin offerings (ICOs) and token crowdfunding campaigns. It provides a standardized framework for token creation, making it easier for projects to raise funds globally.

Conclusion

ERC20 tokens have revolutionized the cryptocurrency industry by providing a standardized framework for creating and managing tokens on the Ethereum blockchain. 

These tokens offer interoperability, liquidity, and smart contract functionality, empowering developers and users to leverage the vast potential of the Ethereum ecosystem. 

Although ERC20 tokens have their limitations, their advantages and widespread adoption demonstrate their significance in the evolving blockchain landscape. 

As the crypto industry grows, ERC20 tokens will remain a crucial component, enabling innovation and decentralized applications on the Ethereum platform.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.

Token Metrics does not recommend that any cryptocurrency should be bought, sold, or held by you. Do conduct your own due diligence and consult your financial advisor before making any investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Modern API Development Best Practices

Token Metrics Team
5
MIN

APIs power modern software: they connect services, enable integrations, and surface data across web, mobile, and AI systems. Effective api development combines clear design, robust security, reliable testing, and observability so teams can iterate fast without breaking integrations. This guide frames practical approaches, architectural trade-offs, and tooling choices for building maintainable APIs at scale.

What is API development?

API development is the process of designing, implementing, documenting, and maintaining application programming interfaces that expose functionality or data to clients. It spans technical disciplines: API design (URL patterns, request/response shapes), data modeling, authentication/authorization, versioning, monitoring, and developer experience (docs, SDKs, testing sandboxes).

Think of API development as a product lifecycle: define consumer use cases, design contracts, implement endpoints, validate with tests and staging environments, onboard consumers, and monitor usage to iterate. Success metrics are often qualitative (developer satisfaction) and quantitative (latency, error rates, adoption, and SLAs).

Design principles & architectures

Start with a consumer-driven approach: catalog who will call the API and why. Use interface-first design to lock contracts early and generate client code. Common architectural choices include REST, GraphQL, and gRPC; each has trade-offs:

  • REST: Simplicity and caching advantages for resource-oriented models; works well for broad public APIs.
  • GraphQL: Flexible payload shaping for front-end needs and reduced round-trips; adds complexity in caching and rate-limiting.
  • gRPC: Low-latency binary protocol for inter-service communication, ideal for microservices environments.

Key design practices:

  • Version your API using semantic strategies (URI-based v1/v2 or header-based negotiation) and communicate migration paths.
  • Design predictable, consistent error responses and document status codes and error schemas.
  • Model idempotency for write operations to support retries without side effects.
  • Provide client SDKs or OpenAPI/GraphQL schemas to speed adoption.

Security, testing, and performance

Security and reliability are non-negotiable. Implement the principle of least privilege for data access and separate authentication (who you are) from authorization (what you can do).

  • Authentication & authorization: Use proven standards such as OAuth 2.0, OpenID Connect, or mTLS where appropriate. Rotate keys and support scoped tokens for limited privileges.
  • Input validation & rate limiting: Validate payloads server-side and apply rate limits per consumer to protect backend resources.
  • Testing: Automate unit, integration, contract, and chaos tests. Contract testing (e.g., with Pact or OpenAPI validators) prevents breaking changes from reaching consumers.
  • Performance: Profile endpoints, use caching layers (CDN, edge caches), and optimize database queries. Apply circuit breakers and graceful degradation to maintain overall system health.

Scenario analysis helps prioritize hardening efforts: model the impact of a high-traffic surge, a compromised key, or a backend outage and define mitigation steps and SLOs accordingly.

AI tooling and automation for faster api development

AI and automation accelerate many facets of api development. Use code generation from OpenAPI or GraphQL schemas to produce client libraries and reduce boilerplate. Leverage automated testing frameworks to generate test cases from specification files and fuzzers to discover edge-case inputs.

For research and monitoring, AI-driven analytics can surface anomalous patterns in API usage, suggest performance regressions, and assist in prioritizing refactors. For example, integrating analytics and signal providers can help teams detect changes in on-chain or market data streams if your API exposes such feeds. Tools like Token Metrics show how AI can be used to synthesize signals and telemetry for complex data domains; similar approaches can be applied to API observability and decision support.

Practical automation checklist:

  1. Generate docs and SDKs from schemas to reduce manual errors.
  2. Implement CI pipelines that run static analysis, contract tests, and security scans on every PR.
  3. Expose telemetry (request traces, error rates, latency histograms) and use anomaly detection to trigger alerts and retrospectives.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is the difference between REST and GraphQL?

REST is resource-oriented with fixed endpoints and responses; it is simple and cache-friendly. GraphQL offers flexible queries that let clients request precisely the fields they need, reducing overfetching but adding complexity in caching and query cost control.

FAQ: How do I version an API safely?

Choose a clear versioning strategy (URI segments like /v1/ or header-based negotiation). Favor additive, backward-compatible changes (new endpoints or optional fields). Communicate deprecation timelines and provide migration guides and SDK updates.

FAQ: What are the key security practices for APIs?

Use standardized auth (OAuth2/OIDC), validate inputs, enforce least privilege, rotate credentials, employ rate limits, perform regular security scanning, and maintain an incident response plan. Monitor for suspicious access patterns.

FAQ: How can AI help with API development?

AI can generate client code and documentation, suggest test cases, detect anomalies in usage patterns, and prioritize performance fixes. AI-driven analytics can aggregate telemetry to guide product and engineering decisions.

FAQ: What is contract testing and why does it matter?

Contract testing verifies that the provider's API implementation meets the consumer's expected schema and behavior. It prevents breaking changes by validating interactions in CI before deployment.

Disclaimer

This article is educational and informational. It does not constitute professional, financial, or investment advice. Descriptions of products and tools are informational only and not endorsements. Evaluate technologies and services against your organizations requirements and compliance obligations before adopting them.

Research

How API Calls Power Modern Apps

Token Metrics Team
5
MIN

APIs are the lingua franca of modern software: when one system needs data or services from another, it issues an API call. For developers and analysts working in crypto and AI, understanding the anatomy, constraints, and best practices around api calls is essential to building resilient integrations and reliable research pipelines.

What is an API call and why it matters

An API call is a request sent from a client to a server to perform an action or retrieve information. The request specifies an endpoint, method (GET, POST, etc.), headers (for authentication or metadata), and often a body (JSON or other payloads). The server processes the request and returns a response with a status code and data. In distributed systems, api calls enable modularity: microservices, exchange endpoints, data providers, and AI agents all communicate via these standardized exchanges.

For teams integrating market data, on-chain analytics, or AI models, api calls are the mechanism that moves structured data from providers to models and dashboards. Latency, reliability, and data integrity of those calls directly affect downstream analysis, model training, and user experience.

Protocols and common patterns for api calls

There are several common protocols and patterns you will encounter:

  • REST (HTTP/HTTPS): Resource-based endpoints with methods like GET, POST, PUT, DELETE and JSON payloads. It is simple and ubiquitous for public data APIs.
  • RPC (Remote Procedure Call): Calls invoke functions on a remote server (examples include JSON-RPC used by many blockchain nodes).
  • WebSocket / Streaming: Persistent connections for real-time updates, frequently used for trade feeds and live on-chain events.
  • Webhooks: Server-initiated HTTP callbacks that push events to your endpoint, useful for asynchronous notifications.

Choosing the right pattern depends on the use case: low-latency trading systems favor streaming, while periodic snapshots and historical queries are often served over REST.

Anatomy of an api call: headers, payloads, and responses

Understanding the pieces of a typical API request helps with debugging and design:

  1. Endpoint URL: The path identifying the resource or action (e.g., /v1/price or /rpc).
  2. HTTP method: GET for retrieval, POST for creation or complex queries, etc.
  3. Headers: Include authentication tokens (Bearer, API-Key), content-type, and rate-limit metadata.
  4. Body / Payload: JSON, form-encoded data, or binary blobs depending on the API.
  5. Response: Status code (200, 404, 429, 500), response body with data or error details, and headers with metadata.

Familiarity with these elements reduces time-to-diagnosis when an integration fails or returns unexpected values.

Security, authentication, and safe key management

APIs that provide privileged data or actions require robust authentication and careful key management. Common approaches include API keys, OAuth tokens, and HMAC signatures. Best practices include:

  • Use least-privilege API keys: limit scopes and rotate credentials regularly.
  • Avoid embedding keys in client-side code; store them in secure vaults or server-side environments.
  • Require HTTPS for all api calls to protect payloads in transit.
  • Log access events and monitor for anomalous usage patterns that indicate leaked keys.

These practices help prevent unauthorized access and reduce blast radius if credentials are compromised.

Rate limits, pagination, and observability for robust integrations

Service providers protect infrastructure with rate limits and pagination. Common patterns to handle these include exponential backoff for 429 responses, caching frequently requested data, and using pagination or cursor-based requests for large datasets. Observability is critical:

  • Track latency, error rates, and throughput per endpoint.
  • Implement alerting on rising error ratios or slow responses.
  • Use tracing and request IDs to correlate client logs with provider logs during investigations.

Monitoring trends in api call performance allows teams to proactively adjust retry strategies, request batching, or move to streaming alternatives when appropriate.

Testing, debugging, and staging strategies

Reliable integrations require systematic testing at multiple levels:

  • Unit tests: Mock API responses to validate client logic.
  • Integration tests: Run against staging endpoints or recorded fixtures to validate end-to-end behavior.
  • Load tests: Simulate traffic patterns to surface rate-limit issues and resource constraints.
  • Replay and sandboxing: For financial and on-chain data, use historical replays to validate processing pipelines without hitting production rate limits.

Tools like Postman, HTTP clients with built-in retries, and API schema validators (OpenAPI/Swagger) speed up development and reduce runtime surprises.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is an API call?

An api call is a client request to a server asking for data or to perform an action. It includes an endpoint, method, headers, and sometimes a payload; the server returns a status and response data.

REST vs RPC: which model should I use?

REST is resource-oriented and easy to cache and inspect; RPC is procedural and can be simpler for calling node functions (for example, blockchain RPC endpoints). Choose based on the data shape, latency needs, and provider options.

How do I handle rate limits and 429 errors?

Implement exponential backoff, respect Retry-After headers when provided, batch requests where possible, and use caching to reduce repeated queries. Monitoring helps you adapt request rates before limits are hit.

How should I secure API keys?

Store keys in server-side environments or secrets managers, rotate keys regularly, limit scopes, and never commit them to source control. Use environment variables and access controls to minimize exposure.

What tools help test and debug api calls?

Postman, curl, HTTP client libraries, OpenAPI validators, and request-tracing tools are useful. Unit and integration tests with mocked responses catch regressions early.

Disclaimer

This article is for educational and informational purposes only. It explains technical concepts related to api calls and integration practices and does not provide financial, investment, or trading advice. Readers should conduct their own research and consult appropriate professionals before acting on technical or market-related information.

Research

APIs Explained: How Interfaces Power Modern Apps

Token Metrics Team
5
MIN

Every modern app, website, or AI agent depends on a set of invisible connectors that move data and commands between systems. These connectors—APIs—define how software talks to software. This post breaks down what an API is, how different API styles work, why they matter in crypto and AI, and practical steps to evaluate and use APIs responsibly.

What is an API?

An API (application programming interface) is a formalized set of rules and specifications that lets one software component interact with another. Rather than exposing internal code or databases, an API provides a defined surface: endpoints, request formats, response schemas, and error codes. Think of it as a contract between systems: you ask for data or an action in a specified way, and the provider responds in a predictable format.

APIs reduce friction when integrating services. They standardize access to functionality (like payment processing, identity verification, or market data) so developers can build on top of existing systems instead of reinventing core features. Because APIs abstract complexity, they enable modular design, encourage reusability, and accelerate development cycles.

How APIs work — technical overview

At a technical level, APIs expose endpoints over transport protocols (commonly HTTPS). Clients send requests—often with authentication tokens, query parameters, and request bodies—and servers return structured responses (JSON or XML). Key architectural patterns include:

  • REST: Resource-oriented, uses standard HTTP verbs (GET, POST, PUT, DELETE), and typically returns JSON. It's simple and cache-friendly.
  • GraphQL: A query language that lets clients request exactly the fields they need, minimizing over-fetching.
  • WebSocket / Streaming APIs: Persistent connections for real-time data push, useful for live feeds and low-latency updates.
  • RPC / gRPC: Procedure-call style with strong typing and high performance, common in internal microservices.

Operationally, important supporting features include rate limits, API keys or OAuth for authentication, versioning strategies, and standardized error handling. Observability—metrics, logging, and tracing—is critical to diagnose integration issues and ensure reliability.

APIs in crypto and AI — practical examples

In crypto ecosystems, APIs provide price feeds, historical market data, on-chain metrics, wallet services, and order execution. For AI-driven agents, APIs enable access to compute, models, and third-party signals. Example uses:

  • Fetching real-time and historical price data to power dashboards and analytics.
  • Querying on-chain explorers for transaction and address activity for compliance or research.
  • Integrating identity or KYC providers to verify users without handling sensitive documents directly.
  • Calling AI model APIs to generate embeddings, summaries, or predictions used by downstream workflows.

Tools that combine market data, on-chain insights, and AI-driven analysis can streamline research workflows. For example, AI research platforms and data APIs help synthesize signals and surface trends faster. When referencing such platforms in research or product development, it is best practice to evaluate their documentation, data sources, and rate limits carefully. One example of an AI research offering is Token Metrics, which illustrates how analytics and model-driven insights can be presented via a service interface.

Choosing & using APIs: a research checklist

When evaluating an API for a project, consider these practical criteria:

  1. Documentation quality: Clear examples, SDKs, response schemas, and error cases reduce integration time.
  2. Data provenance: Understand sources, update frequency, and any aggregation or normalization applied.
  3. Authentication & permissions: Which auth methods are supported? Can access be scoped and rotated?
  4. Rate limits & pricing: Are limits suitable for your expected throughput, and is pricing predictable?
  5. Latency & uptime SLAs: Critical for real-time systems; check historical status and monitoring APIs.
  6. Security practices: Encryption in transit, secure storage of keys, and breach disclosure policies.
  7. Versioning & backward compatibility: How does the provider manage breaking changes?

Implementation tips: sandbox first, validate edge cases (timeouts, partial responses), and build exponential backoff for retries. For production systems, segregate API keys by environment and rotate credentials regularly.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API?

Q: What is the difference between an API and a web service?
A: A web service is a type of API accessed over a network using web protocols. APIs can be broader, including libraries and OS-level interfaces; web services are specifically networked services.

FAQ: How do APIs secure communication?

Q: How are APIs secured?
A: Common methods include HTTPS for encryption, API keys or OAuth for authentication, scopes to limit access, and rate limiting to reduce abuse. Proper key management and least-privilege access are essential.

FAQ: REST vs GraphQL — when to use which?

Q: When is REST preferable to GraphQL?
A: REST is simple and widely supported—good for standardized CRUD operations and caching. GraphQL excels when clients need flexible queries and want to minimize over-fetching, but it adds complexity on the server side.

FAQ: Can APIs be used for crypto trading?

Q: Are APIs used to place trades?
A: Many exchange APIs allow programmatic order placement, market data retrieval, and account management. Using them requires careful handling of authentication, error states, and adherence to exchange rate limits and terms of service.

FAQ: How to evaluate an API for a project?

Q: What steps help evaluate an API?
A: Review docs, test a sandbox, verify data lineage and SLA, estimate costs at scale, and ensure the provider follows security and versioning best practices before integrating.

Disclaimer

This article is educational and informational only. It does not constitute investment advice, trading recommendations, or endorsements of any specific products or services. Always perform your own due diligence and comply with applicable laws and platform terms when using APIs or building systems that interact with financial markets.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products