Research

Mastering the OpenAI API: Practical Guide

Practical guide to the OpenAI API: endpoints, embeddings, fine-tuning, rate limits, security, and implementation patterns to build reliable AI-powered applications and agents.
Token Metrics Team
5
MIN

The OpenAI API has become a foundation for building modern AI applications, from chat assistants to semantic search and generative agents. This post breaks down how the API works, core endpoints, implementation patterns, operational considerations, and practical tips to get reliable results while managing cost and risk.

How the OpenAI API Works

The OpenAI API exposes pre-trained and fine-tunable models through RESTful endpoints. At a high level, you send text or binary payloads and receive structured responses — completions, chat messages, embeddings, or file-based fine-tune artifacts. Communication is typically via HTTPS with JSON payloads. Authentication uses API keys scoped to your account, and responses include usage metadata to help with monitoring.

Understanding the data flow is useful: client app → API request (model, prompt, params) → model inference → API response (text, tokens, embeddings). Latency depends on model size, input length, and concurrency. Many production systems put the API behind a middleware layer to handle retries, caching, and prompt templating.

Key Features & Endpoints

The API surface typically includes several core capabilities you should know when planning architecture:

  • Chat/Completion: Generate conversational or free-form text. Use system, user, and assistant roles for structured prompts.
  • Embeddings: Convert text to dense vectors for semantic search, clustering, and retrieval-augmented generation.
  • Fine-tuning: Customize models on domain data to improve alignment with specific tasks.
  • Files & Transcriptions: Upload assets for fine-tune datasets or to transcribe audio to text.
  • Moderation & Safety Tools: Automated checks can help flag content that violates policy constraints before generation is surfaced.

Choosing the right endpoint depends on the use case: embeddings for search/indexing, chat for conversational interfaces, and fine-tuning for repetitive, domain-specific prompts where consistency matters.

Practical Implementation Tips

Design patterns and practical tweaks reduce friction in real-world systems. Here are tested approaches:

  1. Prompt engineering and templates: Extract frequently used structures into templates and parameterize variables. Keep system messages concise and deterministic.
  2. Chunking & retrieval: For long-context tasks, use embeddings + vector search to retrieve relevant snippets and feed only the most salient content into the model.
  3. Batching & caching: Batch similar requests where possible to reduce API calls. Cache embeddings and immutable outputs to lower cost and latency.
  4. Retry logic and idempotency: Implement exponential backoff for transient errors and idempotent request IDs for safe retries.
  5. Testing and evaluation: Use automated tests to validate response quality across edge cases and measure drift over time.

For development workflows, maintain separate API keys and quotas for staging and production, and log both prompts and model responses (with privacy controls) to enable debugging and iterative improvement.

Security, Cost Control, and Rate Limits

Operational concerns are often the difference between a prototype and a resilient product. Key considerations include:

  • Authentication: Store keys securely, rotate them regularly, and avoid embedding them in client-side code.
  • Rate limits & concurrency: Respect published rate limits. Use client-side queues and server-side throttling to smooth bursts and avoid 429 errors.
  • Cost monitoring: Track token usage by endpoint and user to identify high-cost flows. Use sampling and quotas to prevent runaway spend.
  • Data handling & privacy: Define retention and redaction rules for prompts and responses. Understand whether user data is used for model improvement and configure opt-out where necessary.

Instrumenting observability — latency, error rates, token counts per request — lets you correlate model choices with operational cost and end-user experience.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What are common failure modes and how to mitigate them?

Common issues include prompt ambiguity, hallucinations, token truncation, and rate-limit throttling. Mitigation strategies:

  • Ambiguity: Add explicit constraints and examples in prompts.
  • Hallucination: Use retrieval-augmented generation and cite sources where possible.
  • Truncation: Monitor token counts and implement summarization or chunking for long inputs.
  • Throttling: Apply client-side backoff and request shaping to prevent bursts.

Run adversarial tests to discover brittle prompts and incorporate guardrails in your application logic.

Scaling and Architecture Patterns

For scale, separate concerns into layers: ingestion, retrieval/indexing, inference orchestration, and post-processing. Use a vector database for embeddings, a message queue for burst handling, and server-side orchestration for prompt composition and retries. Edge caching for static outputs reduces repeated calls for common queries.

Consider hybrid strategies where smaller models run locally for simple tasks and the API is used selectively for high-value or complex inferences to balance cost and latency.

FAQ: How to get started and troubleshoot

What authentication method does the OpenAI API use?

Most implementations use API keys sent in an Authorization header. Keys must be protected server-side. Rotate keys periodically and restrict scopes where supported.

Which models are best for embeddings versus chat?

Embedding-optimized models produce dense vectors for semantic tasks. Chat or completion models prioritize dialogue coherence and instruction-following. Select based on task: search and retrieval use embeddings; conversational agents use chat endpoints.

How can I reduce latency for user-facing apps?

Use caching, smaller models for simple tasks, pre-compute embeddings for common queries, and implement warm-up strategies. Also evaluate regional endpoints and keep payload sizes minimal to reduce round-trip time.

What are best practices for fine-tuning?

Curate high-quality, representative datasets. Keep prompts consistent between fine-tuning and inference. Monitor for overfitting and validate on held-out examples to ensure generalization.

How do I monitor and manage costs effectively?

Track token usage by endpoint and user journey, set per-key quotas, and sample outputs rather than logging everything. Use batching and caching to reduce repeated calls, and enforce strict guards on long or recursive prompts.

Can I use the API for production-critical systems?

Yes, with careful design. Add retries, fallbacks, safety checks, and human-in-the-loop reviews for high-stakes outcomes. Maintain SLAs that reflect model performance variability and instrument monitoring for regressions.

Disclaimer

This article is for educational purposes only. It explains technical concepts, implementation patterns, and operational considerations related to the OpenAI API. It does not provide investment, legal, or regulatory advice. Always review provider documentation and applicable policies before deploying systems.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Research

How Crypto APIs Streamline Tax Reporting for Digital Assets

Token Metrics Team
6
MIN

For active crypto traders and digital asset holders, the yearly ritual of tax reporting can be complicated and stressful. Each wallet, exchange, and blockchain interacts in ways that fragment your transaction data, making accurate reporting a daunting task. As crypto adoption spreads, can crypto APIs simplify this process and help ensure accurate, timely tax compliance?

What Are Crypto APIs and Why Do They Matter?

APIs, or Application Programming Interfaces, are digital gateways that allow software applications to communicate with one another. In the cryptocurrency world, crypto APIs connect apps, platforms, and users to real-time blockchain data, exchange information, and transaction histories. Major exchanges, wallets, and analytics providers offer APIs so users can access their data programmatically.

For tax reporting, this connection is critical. Crypto APIs enable retrieval of:

  • All wallet and exchange transactions—including buys, sells, transfers, and staking rewards
  • Historical price data for each asset
  • Incoming and outgoing token flows (even across multiple blockchains)
  • Unique identifiers for each transaction

This direct access ensures users and accounting tools get the most accurate, comprehensive data possible, setting the foundation for compliant tax reporting.

How Crypto APIs Support Tax Reporting

Crypto tax liabilities are determined by tracking each crypto transaction throughout the tax year—across wallets, exchanges, blockchains, and DeFi protocols. Each step must be captured: acquisitions, sales, conversions, airdrops, rewards, and sometimes even failed transactions. Manually gathering this information often leads to errors and omissions.

Crypto APIs automate much of this process:

  • Transaction Aggregation: APIs fetch transaction histories from exchanges and wallets, eliminating manual downloads or spreadsheet entries.
  • Historical Pricing: APIs deliver price data at the exact moments of each transaction, enabling accurate capital gains/loss calculations.
  • Multi-Asset, Multi-Chain Support: API integrations can bring together Bitcoin, Ethereum, altcoins, and tokens from various blockchains for consolidated reporting.
  • Tax Form Generation: Some tax tools leverage APIs to automatically fill IRS forms such as 8949 or country-specific equivalents.

By automating data retrieval and normalization, APIs reduce human error and relieve the tedium of manual tracking, increasing the likelihood of accurate and compliant reporting.

Types of Crypto APIs Used for Taxation

Various crypto APIs play roles in tax calculation and compliance workflows. Their capabilities can be grouped into several categories:

  • Exchange APIs: Provide read-only access to trade history, transfers, and account balances from centralized trading platforms.
  • Wallet APIs: Extract on-chain transactions, including self-custodied wallets and hardware devices, for full account tracing.
  • Blockchain Data APIs: Parse data from the blockchain itself for assets or platforms not covered by common wallets/exchanges.
  • Price & Market Data APIs: Supply pricing at specific timestamps, essential for tax-lot and fair market value calculations.
  • Analytics & Reporting APIs: Common with crypto tax software, these deliver formatted tax reports, error warnings, and suggestion workflows.

Leading crypto tax tools integrate one or more of these API types to connect your accounts and gather all the necessary information for reporting.

Choosing the Right Crypto API for Your Tax Needs

No single crypto API covers every trading platform, blockchain, or asset. When selecting an API—or a tax tool that integrates APIs—consider these factors:

  • Covers All Your Sources: Check if the API (or tools that use it) supports all the exchanges, wallets, and blockchains you’ve used in the tax year.
  • Data Completeness: Ensure the API delivers granular transaction details (timestamps, fees, asset IDs, etc.) for accurate gain/loss calculations.
  • Reliability & Security: Look for established providers with a track record of uptime and compliant data handling practices.
  • Automation & Scalability: If you’re an active trader or institutional user, prioritize APIs offering automation, bulk data retrieval, and developer support.
  • Integration with Tax Software: Using a tax platform with strong API integrations with your coins and exchanges can simplify everything—from import to tax form generation.

Popular crypto tax platforms often act as aggregators, using APIs from multiple sources to ensure complete data capture and reporting accuracy. Advanced APIs—even AI-powered ones like those from Token Metrics—can also provide on-chain analysis and insights that may help proactively monitor tax impacts throughout the year.

A Closer Look at Using Crypto APIs for Tax Reporting

Let’s walk through how APIs typically fit into crypto tax workflows:

  1. Connect Accounts and Wallets: Using API keys (often read-only), you link your exchanges, wallets, and blockchains to your chosen tax tool.
  2. Sync and Import Transactions: The tool pulls transaction histories via APIs, consolidating buys, sales, deposits, withdrawals, airdrops, NFTs, and more.
  3. Fetch On-Chain and Historical Prices: Market data APIs retrieve price history at the exact transaction times.
  4. Classify Transactions: Using smart algorithms (sometimes AI-driven), the tool/utility tags income, capital gains, staking rewards, gifting, or transfers.
  5. Generate Tax Reports: With everything categorized, software can generate the tax forms, appendices, or summaries you’ll need for digital asset tax reporting.

This streamlined approach saves time, reduces costly mistakes, and, crucially, helps create a paper trail that stands up to tax authority scrutiny. For high-volume traders or those moving assets across multiple platforms, crypto APIs are increasingly seen as a necessity—not just a convenience.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Can I Use Crypto APIs for Tax Reporting?

What info do crypto APIs provide for tax reporting?

Crypto APIs can deliver transaction histories, account balances, historical pricing, and details such as gas fees and blockchain-specific data, enabling accurate calculation of gains, losses, and income for tax filing.

Are crypto API integrations secure for tax purposes?

Most reputable APIs utilize read-only permissions, so users can’t withdraw or trade with connected accounts. Always use API keys securely, with platforms that prioritize user data privacy and security.

Can I use APIs for every type of crypto asset?

While many APIs cover major coins and blockchains, full support for NFTs, DeFi protocols, and newer tokens may vary. Check compatibility with your holdings before relying exclusively on APIs for reporting.

Do crypto tax platforms use APIs or manual imports?

Most modern crypto tax platforms offer both—APIs for automated data syncing and manual CSV/Excel uploads as a fallback, ensuring coverage when API connectivity isn’t available for a particular service.

Will using crypto APIs make me compliant with tax laws?

APIs streamline data collection but do not ensure compliance by themselves. Users must ensure all transactions are captured, accurately reported, and filed according to local reporting requirements.

Disclaimer

This article is for informational and educational purposes only and does not constitute tax, accounting, or investment advice. Always consult a qualified tax professional for guidance specific to your situation and jurisdiction.

Research

Create a Powerful Crypto Dashboard Using APIs: Step-by-Step Guide

Token Metrics Team
6
MIN

Imagine seeing real-time crypto prices, portfolio insights, and token analytics—all in one place, tailored to your needs. Crypto dashboards do exactly this: consolidating blockchain data in one interface, empowering users to track and analyze digital assets with accuracy and speed. But how do you go from scattered data sources to a unified dashboard? This guide will walk you through how APIs unlock this potential and show you the essential steps to building an effective crypto dashboard.

Why Use APIs for Crypto Dashboards?

APIs (Application Programming Interfaces) let you access real-time and historical blockchain data, trading signals, and market analytics from external services. By leveraging APIs, you avoid the intensive process of running your own blockchain nodes or manually collecting data from multiple sources. Instead, you use robust, well-documented endpoints from reputable providers to power your dashboard's features.

Key benefits of using APIs for your crypto dashboard include:

  • Real-Time Data: Access up-to-the-minute prices, order books, and market trends.
  • Simplified Development: APIs offer structured, reliable data formats, reducing code complexity.
  • Comprehensive Coverage: Pull data on thousands of tokens, wallets, exchanges, and on-chain activity.
  • AI & Analytical Tools: Some APIs (such as those from Token Metrics) enrich raw data with machine learning signals or advanced analytics.

Planning Your Dashboard Features

Before coding, outline the features you need. Crypto dashboards vary in scope—common modules include:

  • Portfolio Tracking: Monitor holdings, calculate portfolio value, and view historical performance.
  • Price Alerts & Watchlists: Stay informed on assets you care about most.
  • Market Data Visualization: Display candlestick charts, volume, order book depth, and on-chain statistics.
  • AI Insights: Incorporate predictive analytics, sentiment scores, or token rankings using APIs that provide more than raw price data.

Choose the API endpoints that map to these features—consider documentation quality, rate limits, and data freshness. Providers such as Token Metrics can provide multi-layered data like real-time prices, technical indicators, and AI-driven analytics in one place.

Choosing the Right Crypto API

The backbone of your dashboard is data reliability and coverage. Evaluate potential APIs based on:

  • Data Breadth: Coverage of coins, tokens, exchanges, and on-chain projects.
  • Data Depth: Depth of analytics—does the API offer only spot prices, or does it also include technical, fundamental, or on-chain signals?
  • Update Frequency: How often is data refreshed—are you getting real-time information?
  • Documentation & Support: Well-documented endpoints and responsive developer support are essential.
  • Security & API Limits: Authentication methods, rate limits, and safe data practices.

Many developers start with free tiers to prototype, then scale up as their dashboard features mature. Consider APIs that deliver extra analytical layers (like social sentiment or AI-generated ratings) if you want to build advanced features.

Step-by-Step: Building Your Crypto Dashboard with an API

  1. Select Your Stack: Decide on your frontend framework (React, Vue, etc.) and backend setup (Node.js, Python Flask, etc.), ensuring you can make HTTP requests and handle JSON responses easily.
  2. Register & Obtain API Keys: Sign up with an API provider—such as Token Metrics—and generate your API credentials securely.
  3. Fetch Data: Use HTTP requests (GET/POST) to call endpoints (e.g., latest price, historical charts, token analytics) and parse the response in your app.
  4. Process & Store Data: Structure data for efficient usage—cache or store key response elements for improved performance.
  5. Visualize Data: Integrate charts, tables, and alerts with popular libraries (like Chart.js, D3.js) to deliver insights in an intuitive UI.
  6. Add Advanced Analytics (Optional): Incorporate AI-driven analytics, on-chain patterns, or technical indicators if your API supports them.
  7. Test & Iterate: Debug API error handling, refine data refresh intervals, and optimize the UI for responsiveness and clarity.

Sample code for an API request (in JavaScript):

fetch('https://api.example.com/v1/price?symbol=BTC', {
  headers: { 'Authorization': 'Bearer YOUR_API_KEY' }
})
  .then(response => response.json())
  .then(data => {
    // Render price in your dashboard
    console.log(data);
  });

Real-World Use Cases and Advanced Tips

Professional analysts, traders, and hobbyists leverage crypto dashboards for:

  • Tracking high-frequency price movement for algorithmic strategies (without offering strategy recommendations)
  • Comparing on-chain transaction metrics across networks
  • Visualizing correlations between asset prices and social sentiment signals
  • Researching liquidity, volatility, or developer activity efficiently using data APIs

For advanced dashboards:

  • Aggregate Multiple APIs: Combine on-chain, market, and news data for a holistic overview.
  • Implement Authentication: Protect endpoints with OAuth or JWT, especially if storing user-specific data.
  • Monitor API Usage: Stay within rate limits to ensure uptime and reliability.
  • Leverage Websockets: For ultra-low latency updates, use websocket endpoints if available.
  • Maintain Regulatory Awareness: Use data for informational purposes without soliciting trades or giving investment guidance.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQs

What is a crypto dashboard?

A crypto dashboard is a web or mobile interface that aggregates and visualizes various types of cryptocurrency data. Users can track market prices, portfolio holdings, historical charts, and even AI-driven analytics in one convenient display. Dashboards often rely on APIs to fetch up-to-date, actionable information from multiple crypto sources.

Do I need to code to build a crypto dashboard?

While some no-code dashboard tools exist, building a customized crypto dashboard typically requires basic programming knowledge—especially to integrate APIs, process response data, and create dynamic charts. Common languages include JavaScript, Python, or using frameworks like React for the frontend.

Are there free crypto APIs for dashboard projects?

Many major crypto API providers offer free tiers or trial access, enabling you to start building dashboards without upfront costs. However, free APIs may have limitations on the number of requests, update frequency, or available data. Consider premium plans as your requirements grow.

How do I secure my API keys in a dashboard app?

Never expose API keys directly in public frontend code. Use environment variables, server-side proxies, or authentication layers to help protect sensitive credentials. Regularly rotate your keys and monitor API usage for unauthorized access.

Can I add AI features to a crypto dashboard using APIs?

Yes, some APIs—including those from Token Metrics—provide AI-driven analytics, such as predictive indicators or algorithmic token ratings. Integrating these endpoints enables advanced research and deeper visualization capabilities for end users.

Disclaimer

This content is for informational and educational purposes only and does not constitute investment advice or an offer to buy, sell, or recommend any cryptocurrency or service. Always conduct your own research and consult with professional advisors regarding technical integrations and regulatory obligations.

Research

API Key Security: Essential Steps to Prevent Theft and Exposure

Token Metrics Team
6
MIN

APIs are the backbone of many modern applications, especially within the crypto and AI sectors. But with convenience comes risk—leaked or stolen API keys can compromise your app, data, and even your users. Ensuring your API keys are properly protected is vital for any developer or organization integrating with financial, trading, or AI services.

Why API Keys Are Valuable Targets

API keys act as digital passports, granting access to services, data, and sensitive operations. In crypto and AI environments, these keys may unlock valuable features such as live price feeds, trading execution, or proprietary AI models. Attackers seek out API keys because they offer a direct route into your systems—potentially allowing unauthorized trades, data exfiltration, or abuse of paid services.

According to security research, exposed API keys are among the most common root causes of data breaches in software development. In high-value areas like cryptocurrency or financial data, a compromised API key can mean immediate and irreversible losses. This makes robust API key management and security a non-negotiable part of your development lifecycle.

Common Risks and Attack Vectors

Understanding how API keys are stolen is the first step towards preventing it. Attackers employ several strategies to discover and exploit keys:

  • Source Code Leaks: Developers may accidentally commit API keys to public repositories, such as GitHub or Bitbucket.
  • Frontend Exposure: Embedding keys in client-side code (like JavaScript) can expose them to anyone inspecting the source.
  • Network Interception: Transmitting keys over unencrypted (HTTP instead of HTTPS) channels allows attackers to intercept them via man-in-the-middle attacks.
  • Poor Access Control: Unrestricted API keys (lacking IP whitelisting or permission scopes) are vulnerable even if leaked only once.
  • Third-party Integrations: Insecure plugins or libraries may mishandle or leak keys unintentionally.

Each risk vector underscores the importance of treating your API keys as sensitive credentials, on par with passwords or private cryptographic keys.

Best Practices to Secure Your API Keys

Effective API key protection requires a combination of technology, process, and vigilance. Here are key best practices to help you minimize your security risks:

  1. Store Keys Securely: Never hardcode API keys into your application code. Use environment variables and secure vaults (like AWS Secrets Manager, HashiCorp Vault, or Azure Key Vault) to store and manage credentials.
  2. Restrict Key Permissions: Always use the principle of least privilege—create keys with only the permissions absolutely necessary for the intended function.
  3. IP Whitelisting: Where APIs allow, restrict key usage to specific server or client IP addresses to prevent unauthorized access.
  4. Rotate Keys Regularly: Implement a policy for frequent key rotation and revoke old keys when no longer needed.
  5. Monitor Usage: Set up logging and alerting for abnormal API activity (unexpected requests, spikes in traffic, etc.). This enables early detection of suspicious behavior.
  6. Use HTTPS Always: Never transmit API keys over unencrypted channels. HTTPS encrypts traffic, preventing interception by attackers.
  7. Never Expose in Client-side Code: For browser or mobile apps, design your architecture to never expose API keys in the frontend. Use backend servers to proxy requests where possible.

Adopting these strategies not only secures your API integration but also strengthens your application's overall security posture.

Advanced Protections and Tools for Developers

For applications in high-risk or regulated environments, advanced techniques can further minimize the risk of API key exposure:

  • Automated Secret Scanning: Use tools like GitGuardian, TruffleHog, or native git pre-commit hooks to detect accidental key leaks in codebases.
  • Zero Trust Architectures: Implement strong authentication and authorization layers beyond API keys, such as OAuth, JWTs, or mutual TLS for sensitive endpoints.
  • Environment Segregation: Use different API keys for development, testing, and production environments. This reduces risk if test keys leak while still protecting valuable production resources.
  • Role-Based Access Control (RBAC): Apply fine-grained controls so each API key aligns with its intended application's role and user authority.

Many leading API providers, including those in crypto and AI, offer these advanced controls within their developer portals. Reviewing your provider's best practices and security documentation is always recommended.

API Key Security in the Crypto Landscape

The risks associated with API keys in crypto applications are especially pronounced. Malicious actors often scan public repositories for leaked API keys associated with major exchanges, DeFi protocols, or analytics providers. Many high-profile hacks have originated from a single compromised API credential.

Therefore, when working with crypto APIs—such as market data, portfolio management, or trading execution—robust key hygiene is a must. Always treat your API credentials as confidential and regularly review your integrations for possible leaks or misconfigurations. Be extra cautious when using third-party frameworks or libraries, and validate the security of vendor SDKs before integrating.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Key Questions on API Key Protection

What is the difference between an API key and a password?

An API key is a unique identifier that grants access to a specific application or service feature. Unlike passwords—which are usually tied to user login—API keys often control programmatic or automated access and must be secured with equal vigilance.

Is it safe to store API keys in environment variables?

Storing API keys in environment variables is much safer than hardcoding them into codebases. However, ensure these environment variables are protected by server-level access controls and not inadvertently exposed during deployments or logging.

How do I know if my API key has been compromised?

Monitor your API provider dashboard for unexpected activity, such as unauthorized transactions or unusual spikes in requests. Some providers support alerts or allow you to instantly revoke or rotate keys if you suspect exposure.

Can I use the same API key across multiple applications?

This practice is discouraged. Different applications should use unique API keys, each with their own permission scope and tracking. If one application is compromised, it won’t affect the security of your other integrations.

How often should I rotate my API keys?

Key rotation frequency depends on your application's risk profile and provider requirements. As a rule of thumb, rotate production keys quarterly or after any suspected exposure, and always decommission unused credentials promptly.

Disclaimer

This blog post is for informational purposes only and is not investment advice or an endorsement of any product or platform. Always adhere to your organization’s security policies and consult official documentation for technical implementations.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products