Back to blog
Research

What is a Blockchain Node and What Does It Do? A Complete Guide for 2025

Discover what a blockchain node is and its vital role in the network. Learn how it operates and why it's essential for blockchain technology. Read more!
Talha Ahmad
5 min
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe

The blockchain revolution has fundamentally transformed the way we handle digital transactions, data storage, and decentralized systems. The primary function of blockchain nodes is to maintain the blockchain's public ledger and ensure consensus across the network, supporting the decentralized infrastructure and integrity of the system. At the core of every blockchain network lies a crucial component that many users overlook but absolutely depend on: blockchain nodes. Understanding what is a blockchain node and what does it do is essential for anyone involved in cryptocurrency trading, blockchain development, or simply interested in how blockchain nodes work to validate transactions, store data, and maintain the decentralized network.

Understanding Blockchain Nodes: The Network's Backbone

A blockchain node refers to a computer or device that participates actively in a blockchain network by maintaining a copy of the distributed ledger and assisting in validating new transactions. These nodes act as individual participants in a vast, decentralized database where no single entity governs the information, creating a decentralized network that is resilient and censorship-resistant. Relying on just one node would make the network vulnerable to failures and attacks, but having many nodes ensures greater decentralization, stability, and security.

When you send cryptocurrency from one wallet to another, the transaction data isn’t processed by a bank or a central entity. Instead, it is broadcast to thousands of blockchain nodes worldwide. These nodes, along with other nodes in the network, collaborate to verify the legitimacy of the transaction, ensuring the sender has sufficient funds and preventing issues like double-spending. This process of authenticating transactions and broadcasting them across the entire network ensures the integrity of the blockchain ledger.

Because blockchain nodes store copies of the entire blockchain history, the network gains remarkable durability. Each node runs protocol software to participate in the network and communicate with others. Unlike traditional centralized systems vulnerable to single points of failure, a blockchain network can continue functioning smoothly even if many nodes go offline. This redundancy is what makes networks such as the bitcoin network, which relies on decentralized nodes and miners, so robust and secure. Nodes play a vital role in maintaining the network's security, ensuring the integrity and reliability of the blockchain.

The Blockchain Network: How Nodes Connect and Communicate

A blockchain network is a decentralized network made up of countless blockchain nodes that work in harmony to validate, record, and secure blockchain transactions. Unlike traditional systems that rely on a central authority, a blockchain network distributes responsibility across all participating nodes, creating a robust and resilient infrastructure.

Each blockchain node maintains a copy of the entire blockchain ledger, ensuring that every participant has access to the same up-to-date information. As new transactions occur, they are broadcast across the network, and every node updates its ledger in real time. This is made possible through a peer-to-peer network architecture, where each node can both send and receive data, eliminating single points of failure and enhancing the network’s security.

Within this decentralized network, nodes store and verify blockchain data according to their specific roles. Full nodes are responsible for storing the entire blockchain ledger and independently validating every transaction and block. Light nodes (or SPV nodes) store only the essential data needed to verify transactions, making them ideal for devices with limited resources. Mining nodes play a critical role in validating transactions and adding new blocks to the blockchain by solving complex mathematical puzzles, while authority nodes are tasked with authenticating transactions and ensuring the network operates according to the established rules.

Archival nodes go a step further by storing the entire blockchain history, including all past transactions, which is essential for services that require access to comprehensive transaction history. Staking nodes participate in proof-of-stake networks, where they validate transactions and add new blocks based on the amount of cryptocurrency they hold and are willing to “stake” as collateral. Super nodes and master nodes perform specialized tasks such as implementing protocol changes, maintaining network stability, and sometimes enabling advanced features like instant transactions or privacy enhancements.

The seamless operation of a blockchain network relies on a consensus mechanism—a set of rules that all nodes follow to agree on the validity of new transactions and blocks. This process ensures that no single node can manipulate the blockchain ledger, and it helps prevent issues like network congestion by coordinating how transactions are processed and recorded. For example, the bitcoin blockchain uses a proof-of-work consensus mechanism, while other networks may use proof-of-stake or other protocols.

Innovations like lightning nodes enable off-chain processing of transactions, reducing the load on the main blockchain and allowing for faster, more scalable exchanges. As the blockchain ecosystem evolves, new types of nodes and consensus mechanisms continue to emerge, each contributing to the network’s security, efficiency, and decentralized nature.

In essence, blockchain nodes are the backbone of any blockchain network. By working together to validate and record transactions, these nodes ensure the integrity and reliability of the entire system. Understanding how different types of blockchain nodes connect and communicate provides valuable insight into the complexity and power of decentralized networks, and highlights why blockchain technology is revolutionizing the way we think about data, trust, and digital value.

Types of Blockchain Nodes: Different Roles, Different Functions

Not all blockchain nodes perform the same functions. There are several node variations of blockchain nodes, each playing a unique role in maintaining the blockchain ecosystem and ensuring smooth network operation. These include super nodes, which are the super nodes rarest type and are created on demand for specialized tasks, as well as master nodes and others.

Full nodes are the most comprehensive type of node. They download and store data for the entire blockchain ledger, including all the transactions and blocks from the beginning of the blockchain. Full nodes independently verify every transaction and block against the network’s consensus mechanism, ensuring that only valid data is added to the blockchain. These nodes form the backbone of the network’s security, as they prevent invalid or malicious transactions from being accepted.

In contrast, light nodes (or SPV nodes) operate more efficiently by only downloading the essential data, such as block headers, rather than the full blockchain. They require less processing power and are ideal for mobile devices or wallets with limited storage and bandwidth. While light nodes sacrifice some independence, they still contribute to the network’s decentralization by verifying transactions without storing the entire blockchain history.

Mining nodes (also called miner nodes) combine the functions of full nodes with the additional task of creating new blocks. These nodes compete to solve complex cryptographic puzzles, and the winning miner adds the next block to the main blockchain, earning block rewards and transaction fees. In proof-of-stake networks, a staking node or validator node performs a similar function by using their stake to secure the network instead of computational power. Staking nodes participate in the authentication process, gain authentication powers, and must meet predetermined metrics to qualify for these roles.

Another specialized type includes archival full nodes, which go beyond full nodes by storing all the transactions and the complete blockchain's transaction history. An archival full node stores or can store data for the entire blockchain, making them vital for services like blockchain explorers and analytics platforms that require access to complete transaction history. The node stores all historical data, ensuring blockchain integrity and transparency.

Other variations include pruned full nodes, which store only the most recent blockchain transactions and discard older data to manage storage limits. A pruned full node has a set memory limit and retains only recent data, deleting the oldest blocks to optimize storage while maintaining the latest transaction information.

Lightning nodes play a crucial role in congested blockchain networks by enabling instantaneous exchanges and solving issues of slow processing. They use out of network connections to execute off-chain transactions, which helps reduce network congestion, lower transaction fees, and improve transaction speed and cost-efficiency.

In proof-of-authority networks, authority nodes (also known as approved nodes) are selected through a vetting process to ensure trustworthiness and accountability. The distribution of nodes, or blockchain hosts, across many blockchain networks enhances network robustness, security, and decentralization by spreading authority and preventing infiltration. Many blockchain networks exist, each with different features, governance models, and privacy options, supporting diverse community participation and transparent or pseudonymous transactions.

How Blockchain Nodes Maintain Network Security

The security of a blockchain network emerges from the collective efforts of thousands of independent nodes operating without a central authority. When a new transaction is broadcast, blockchain nodes immediately begin verifying it by checking digital signatures, confirming sufficient balances, and ensuring the transaction adheres to the blockchain protocol. Each node validates transactions to ensure their legitimacy within the network.

This multi-layered verification process strengthens the network’s security. Cryptographic signatures confirm that only rightful owners can spend their cryptocurrency. The consensus protocol requires a majority of nodes to agree on the validity of new blocks before they are added to the blockchain. Nodes play a crucial role in maintaining secure transactions by verifying transaction authenticity and protecting them through cryptographic hashing and the immutability of the blockchain ledger. Additionally, the distributed nature of the network means that an attacker would need to compromise a majority of nodes spread across different locations — an almost impossible feat.

For investors and traders, understanding the distribution and health of blockchain nodes offers valuable insights into the long-term viability and security of a blockchain network. Platforms like Token Metrics incorporate node metrics into their analysis, helping users evaluate the fundamental strength of blockchain networks beyond just price trends.

The Economics of Running Blockchain Nodes

Running a blockchain node involves costs and incentives that help maintain network security and decentralization. Although full nodes generally do not receive direct financial rewards, they provide operators with important benefits such as complete transaction privacy, the ability to independently verify payments, and participation in network governance. The presence of many nodes also supports scalable growth, enabling the network to efficiently handle increasing transaction volumes without compromising performance.

On the other hand, mining nodes and staking nodes receive block rewards and transaction fees as compensation for their work securing the blockchain. However, operating these nodes requires significant investment in hardware, electricity, and maintenance. Profitability depends on factors like cryptocurrency prices, network difficulty, and energy costs, making mining a dynamic and competitive economic activity.

Many node operators run full nodes for ideological reasons, supporting the network’s decentralization without expecting monetary gain. This voluntary participation strengthens the blockchain ecosystem and reflects the community’s commitment to a peer to peer network free from a central entity.

Choosing and Setting Up Your Own Node

Setting up a blockchain node has become more accessible thanks to improved software and detailed guides from many blockchain projects. However, requirements vary widely. For example, running a Bitcoin full node demands several hundred gigabytes of storage to hold the entire blockchain ledger. Full nodes store the blockchain's transaction history, which is essential for verifying the integrity of the network. Maintaining the network's transaction history is crucial for transparency and trust, as it allows anyone to audit and verify all past transactions.

For beginners, a light node or lightweight wallet offers an easy way to engage with blockchain technology without the technical complexity or storage demands of full nodes. A light node stores only block headers and relies on full nodes for transaction validation, making it suitable for devices with limited resources. As users become more experienced, they may choose to run full nodes to enhance security, privacy, and autonomy.

Cloud-based node services provide an alternative for those who want full node access without investing in hardware. While convenient, these services introduce a level of trust in third parties, which partially contradicts the trustless principles of blockchain technology.

The Future of Blockchain Nodes

Blockchain node architecture is evolving rapidly to meet the demands of scalability, security, and usability. Layer-2 scaling solutions are introducing new node types that process transactions off the main blockchain, reducing congestion while retaining security guarantees. Cross-chain protocols require specialized bridge nodes to facilitate communication between different blockchain networks.

The potential for mobile and IoT devices to operate nodes could dramatically enhance decentralization, though challenges like limited storage, bandwidth, and battery life remain significant hurdles. Innovations in consensus mechanisms and data structures aim to make node operation more efficient and accessible without compromising security.

For traders and investors, staying informed about these developments is crucial. Platforms like Token Metrics offer insights into how advancements in node technology influence network fundamentals and investment opportunities within the expanding blockchain ecosystem.

Understanding what is a blockchain node and what does it do lays the foundation for anyone serious about blockchain technology and cryptocurrency. These often-invisible components form the governing infrastructure of decentralized networks, enabling secure, trustless, and censorship-resistant financial systems that are reshaping the future of digital interactions.

‍

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
About Token Metrics
Token Metrics: AI-powered crypto research and ratings platform. We help investors make smarter decisions with unbiased Token Metrics Ratings, on-chain analytics, and editor-curated “Top 10” guides. Our platform distills thousands of data points into clear scores, trends, and alerts you can act on.
30 Employees
analysts, data scientists, and crypto engineers
Daily Briefings
concise market insights and “Top Picks”
Transparent & Compliant
Sponsored ≠ Ratings; research remains independent
Want Smarter Crypto Picks—Free?
See unbiased Token Metrics Ratings for BTC, ETH, and top alts.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
 No credit card | 1-click unsubscribe
Token Metrics Team
Token Metrics Team

Recent Posts

Research

Regime Switching Explained: Why Smart Crypto Indices Move to Stablecoins

Token Metrics Team
6

The best trade in crypto isn't always a trade—sometimes it's knowing when to step aside. While traditional indices force you to ride every crash from peak to bottom, regime-switching indices take a smarter approach: participate when conditions warrant, preserve capital when they don't. This systematic method of moving between crypto exposure and stablecoins has become the defining feature of next-generation index products, with Token Metrics leading the implementation through data-driven market signals.

What Is Regime Switching?

Regime switching is a systematic investment approach that classifies market conditions into distinct states—typically "bullish" and "bearish"—then adjusts portfolio positioning accordingly. Unlike static indices that maintain constant exposure regardless of conditions, regime-switching strategies dynamically allocate between risk assets and defensive positions based on quantifiable signals.

In practice for crypto indices:

This isn't emotional market timing or gut-feel trading. It's rules-based risk management following consistent, transparent criteria. The decision to switch regimes comes from systematic signals, not fear or greed.

The Traditional Index Problem

Standard crypto indices like market-cap weighted baskets operate on a simple premise: buy the universe, hold forever, rebalance periodically. This works well in prolonged bull markets but fails catastrophically during extended bear cycles.

Real performance data illustrates the problem:

Net result: Investors who bought January 2021 and held through December 2022 saw minimal net gains despite experiencing a massive bull run. The issue isn't the bull market capture—traditional indices do fine when prices rise. The problem is forced participation during catastrophic drawdowns that destroy years of gains in months. A 75% drawdown requires a 300% gain just to break even.

Research across historical crypto cycles shows that systematic regime-switching approaches have historically reduced maximum drawdowns by 40-60% while capturing 70-85% of bull market upside—a compelling risk-adjusted return profile that buy-and-hold cannot match.

Why Stablecoins, Not Cash?

Regime-switching crypto indices face a unique constraint: they operate on-chain and must maintain 24/7 liquidity for instant redeployment. This makes stablecoins the optimal defensive asset for several critical reasons:

Discover Crypto Gems with Token Metrics AI

Token Metrics uses AI-powered analysis to help you uncover profitable opportunities in the crypto market. Get Started For Free

The Signal Behind the Switch

The most critical component of regime-switching isn't the mechanism—it's the signal that triggers the switch. Token Metrics has built its reputation as a leading crypto analytics platform by developing sophisticated, data-driven market intelligence relied upon by over 50,000 traders and investors daily.

Token Metrics' Market Regime Detection employs a proprietary multi-factor model analyzing:

This synthesis results in a probabilistic assessment: whether the environment is bullish enough to risk capital or bearish enough to prioritize preservation.

Transparency is maintained by displaying current regime signals in real-time via visual market gauges, while proprietary model parameters and thresholds remain confidential to prevent strategic front-running.

Real Performance: When Regime Switching Matters Most

Regime-switching strategies excel during major bear markets that erode traditional portfolios:

Starting with $100,000 in November 2021, buy-and-hold would result in approximately $89,000 after recovering from -73%. The regime approach, with smaller drawdowns and better upside capture, could have grown the portfolio to around $152,000, emphasizing how avoiding large losses compounds benefits over time.

Implementation: How TM Global 100 Executes Switches

The TM Global 100 index automates regime switching with simplicity and transparency:

User Experience

Behind the Scenes

When signals turn bearish, the index:

Reversal when signals turn bullish follows the same systematic process.

The Cost of Switching

Every regime transition incurs costs:

Token Metrics estimates costs at approximately 0.8-1.5% per full switch, which becomes cost-effective when signals reliably avoid large drawdowns. Frequent whipsaws are mitigated by the model's stability factors, and projected costs are shown upfront for transparency.

Decision Framework: Is Regime Switching Right for You?

Consider regime switching if you:

Alternatively, if you have long-term horizons, believe markets are fully efficient, or prefer a buy-and-hold strategy, it might not suit you. Both approaches have their merits, but regime switching offers a balanced risk-adjusted profile for volatile crypto markets.

Where Research Meets Execution

Token Metrics has established itself as a leading crypto analytics platform by providing:

However, research alone isn't enough. The TM Global 100 index closes the gap between signal generation and automated execution—applying sophisticated regime logic seamlessly, enabling users to act on data-driven insights instantly with transparency and confidence.

Conclusion: Discipline Over Emotion

Regime switching removes emotional decision-making—often the hardest part of crypto investing. It systematically guides investors to participate during bull runs, protect capital during downturns, and avoid knee-jerk reactions to market volatility. This disciplined approach helps to sustain long-term growth while minimizing the pain of large drawdowns, demonstrating the evolution of systematic crypto investment strategies.

Click here to get early access to Token Metrics indices.

Research

Why Manual Crypto Portfolio Management Is Costing You Money (And Time)

Token Metrics Team
6

You're tracking 50+ tokens across three exchanges, updating your rebalancing spreadsheet every weekend, and second-guessing every exit decision at 2 AM. Sound familiar? Manual crypto portfolio management isn't just exhausting—it's expensive. Between missed rebalances, execution drag, and behavioral mistakes during volatility, DIY portfolio management quietly erodes returns before you see any market gains.

The data tells the story: investors who manually manage diversified crypto portfolios typically underperform comparable automated strategies by 12-18% annually, with 60% of that gap coming from operational inefficiency rather than market timing. If you're spending 10+ hours weekly maintaining positions, those hours have a cost—and it's higher than you think.

The Hidden Costs Destroying Your Returns

Time Drain: The 500-Hour Tax

Managing a diversified crypto portfolio demands constant vigilance. For investors holding 20+ positions, the weekly time investment breaks down to approximately:

  • Market monitoring: 5-8 hours tracking prices, news, and on-chain metrics
  • Rebalancing calculations: 2-3 hours determining optimal weights and required trades
  • Order execution: 3-5 hours placing trades across multiple platforms
  • Record keeping: 1-2 hours logging transactions for tax reporting
  • Research updates: 3-5 hours staying current on project developments

That's 14-23 hours weekly, or 728-1,196 hours annually. At a conservative $50/hour opportunity cost, you're spending $36,400-$59,800 in time value maintaining your portfolio. Even if you value your time at minimum wage, that's still $10,000+ in annual "sweat equity" that automated solutions eliminate.

Execution Drag: Death by a Thousand Trades

Small trades erode portfolios through accumulated friction. Every manual rebalance across a 50-token portfolio requires dozens of individual transactions, each incurring:

  • Trading fees: 0.1-0.5% per trade (average 0.25%)
  • Bid-ask spreads: 0.2-0.8% depending on liquidity
  • Slippage: 0.3-1.2% on smaller cap tokens
  • Gas fees: $2-50 per transaction depending on network congestion

For a $100,000 portfolio rebalanced monthly with 40 trades per rebalance, the costs add up:

  • Average cost per trade: ~$100
  • Monthly execution drag: $4,000
  • Annual execution drag: $48,000 (48% of portfolio value)

The smaller your individual trades, the worse the ratio becomes. A $500 rebalancing trade on a low-liquidity altcoin might pay $25 in fees—a 5% instant loss before any price movement.

Automated indices solve this. TM Global 100, Token Metrics' rules-based index, consolidates 100 individual positions into a single transaction at purchase, with weekly rebalances executed through optimized smart contract batching. Users typically save 3-7% annually in execution costs alone compared to manual approaches.

Behavioral Mistakes: Your Worst Enemy Is in the Mirror

Market psychology research shows that manual portfolio managers tend to make predictable, costly mistakes:

  • Panic selling during drawdowns: When Bitcoin drops 25% in a week, can you stick to your exit rules? Many override their plans during high volatility, often selling near local bottoms.
  • FOMO buying at peaks: Tokens up 300% in a week attract chase behavior, with managers entering after the movement is mostly over.
  • Rebalancing procrastination: Putting off rebalancing leads to drift, holding too much of past winners and missing new opportunities.

Token Metrics' systematic approach removes emotion from the equation. The TM Global 100 Index follows a transparent ruleset: hold the top 100 tokens by market cap during bullish phases, shift to stablecoins during bearish cycles, and rebalance weekly—eliminating emotional override and procrastination.

Missed Rebalances: Drifting Out of Position

Market cap rankings shift constantly. A token ranked #73 on Monday might hit #95 by Friday, or surge to #58. Without systematic rebalancing, your portfolio becomes a collection of recent winners or dumpers.

In Q3 2024, Solana ecosystem tokens surged while Ethereum DeFi tokens consolidated. Manual managers who missed weekly rebalances held too much ETH and insufficient SOL exposure. The result: 15-20% underperformance compared to systematically rebalanced portfolios. Data from Token Metrics shows that weekly rebalancing outperforms monthly or quarterly approaches by 8-12% annually.

Tax Reporting Nightmares

Every trade creates a taxable event. Manual managers executing over 200 trades yearly face:

  • Hours spent compiling transaction logs
  • Reconciliation across multiple exchanges
  • Cost-basis tracking for numerous lots
  • High professional accounting fees ($500-2,000+)

Automated solutions like Token Metrics provide transparent transaction logs for each rebalance, simplifying tax reporting and reducing accounting costs.

The Token Metrics Advantage: Research Meets Execution

Token Metrics has established itself as a leading crypto analytics platform, supporting over 50,000 users with AI-powered token ratings, market regime detection, portfolio optimization tools, and trading signals. But analysis alone isn't enough—implementation is crucial.

TM Global 100 Index bridges this gap. It turns research into actionable, tradeable products by automating rebalancing based on Token Metrics' signals and methodology. One click replaces hours of manual work, following a validated systematic approach.

Automation Without Compromise

The best automation is transparent. TM Global 100 offers:

  • Rules-Based Discipline: Bull markets—hold top 100 tokens; bear markets—move to stablecoins
  • Weekly rebalancing every Monday
  • Full methodology disclosure
  • One-Click execution via embedded self-custodial wallet
  • Real-time market insights and holdings visualization
  • Transaction logs with fees and timestamps

This streamlined process allows users to rapidly execute disciplined rebalancing, saving countless hours and increasing operational efficiency while maintaining asset control.

Decision Framework: When to Automate

Automation suits investors who:

  • Hold 15+ tokens and find rebalancing burdensome
  • Miss optimal rebalancing windows due to time constraints
  • Have experienced emotional trading decisions during volatility
  • Spend over 5 hours a week on portfolio management
  • Want broad exposure without manual tracking

Manual management may be suitable for those with fewer positions, active trading infrastructure, or tactical strategies. For most diversified portfolios, automation enhances efficiency and reduces operational errors.

The Compound Effect of Efficiency

Small inefficiencies compound over time. Over five years, a $50,000 portfolio managed manually with a 12% annual return minus 4-2-1% losses yields roughly a 5% net return, ending at about $63,814. A systematic approach with optimizer integration, zero behavioral errors, and regular rebalancing can attain a 13% net return, reaching approximately $92,246—an increase of over $28,000, not counting time saved.

Conclusion: Time Back, Returns Up

Manual crypto portfolio management made sense when portfolios were small and concentrated. Today’s diversified sets require operational discipline to prevent erosion of returns due to execution drag, missed rebalances, and emotional mistakes. Token Metrics built TM Global 100 to turn research into automated, transparent execution, reclaim your time, and boost portfolio discipline—without sacrificing control.

Research

Moonshots API: Discover Breakout Tokens Before the Crowd

Token Metrics Team
5

The biggest gains in crypto rarely come from the majors. They come from Moonshots—fast-moving tokens with breakout potential. The Moonshots API surfaces these candidates programmatically so you can rank, alert, and act inside your product. In this guide, you’ll call /v2/moonshots, display a high-signal list with TM Grade and Bullish tags, and wire it into bots, dashboards, or screeners in minutes. Start by grabbing your key at Get API Key, then Run Hello-TM and Clone a Template to ship fast.

What You’ll Build in 2 Minutes

Why This Matters

Discovery that converts. Users want more than price tickers, they want a curated, explainable list of high-potential tokens. The Moonshots API encapsulates multiple signals into a short list designed for exploration, alerts, and watchlists you can monetize.

Built for builders. The endpoint returns a consistent schema with grade, signal, and context so you can immediately sort, badge, and trigger workflows. With predictable latency and clear filters, you can scale to dashboards, mobile apps, and headless bots without reinventing the discovery pipeline.

Where to Find The Moonshots API

The cURL request for the Moonshots endpoint is displayed in the top right of the API Reference. Grab it and start tapping into the potential!

How It Works (Under the Hood)

The Moonshots endpoint aggregates a set of evidence—often combining TM Grade, signal state, and momentum/volume context—into a shortlist of breakout candidates. Each row includes a symbol, grade, signal, and timestamp, plus optional reason tags for transparency.

For UX, a common pattern is: headline list → token detail where you render TM Grade (quality), Trading Signals (timing), Support/Resistance (risk placement), Quantmetrics (risk-adjusted performance), and Price Prediction scenarios. This enables users to understand why a token was flagged and how to act with risk controls.

Polling vs webhooks. Dashboards typically poll with short-TTL caching. Alerting flows use scheduled jobs or webhooks to smooth traffic and avoid duplicates. Always make notifications idempotent.

Production Checklist

Use Cases & Patterns

Next Steps

FAQs

1) What does the Moonshots API return?

A list of breakout candidates with fields such as symbol, tm_grade, signal (often Bullish/Bearish), optional reason tags, and updated_at. Use it to drive discover tabs, alerts, and watchlists.

2) How fresh is the list? What about latency/SLOs?

The endpoint targets predictable latency and timely updates for dashboards and alerts. Use short-TTL caching and queued jobs/webhooks to avoid bursty polling.

3) How do I use Moonshots in a trading workflow?

Common stack: Moonshots for discovery, Trading Signals for timing, Support/Resistance for SL/TP, Quantmetrics for sizing, and Price Prediction for scenario context. Always backtest and paper-trade first.

4) I saw results like “+241%” and a “7.5% average return.” Are these guaranteed?

No. Any historical results are illustrative and not guarantees of future performance. Markets are risky; use risk management and testing.

5) Can I filter the Moonshots list?

Yes—pass parameters like min_grade, signal, and limit (as supported) to tailor to your audience and keep pages fast.

6) Do you provide SDKs or examples?

REST works with JavaScript and Python snippets above. Docs include quickstarts, Postman collections, and templates—start with Run Hello-TM.

7) Pricing, limits, and enterprise SLAs?

Begin free and scale up. See API plans for rate limits and enterprise options.

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products