Crypto Basics

Liquid Staking - A Comprehensive Guide to Getting Started

Learn everything about liquid staking with our detailed guide. Check how to start and unleash the potential for passive income in the crypto space.
Marcus K
8 Minutes
MIN

Cryptocurrency enthusiasts are always on the lookout for new and innovative ways to make the most of their digital assets. One such method that has been gaining traction in recent years is liquid staking. 

This approach allows users to stake their tokens in proof-of-stake (PoS) blockchains while maintaining liquidity and participating in other decentralized finance (DeFi) activities. 

In this article, we will explore the concept of liquid staking, how it works, its advantages and disadvantages, popular cryptocurrencies that support this method, and how you can get started.

Understanding Staking and Its Benefits

Before delving into liquid staking, it's essential to grasp the concept of staking and its benefits. Staking involves locking up a certain amount of tokens in a PoS blockchain network to support its operations and security. 

In return for staking, participants can earn rewards in the form of additional tokens. Staking provides several benefits, such as incentivizing token holders to act in the network's best interest and maintaining the blockchain's security and integrity.

What is Liquid Staking?

Liquid staking takes the traditional staking model a step further by allowing users to stake their tokens and receive a separate token, known as a liquid staking token (LST), in return. 

These LSTs represent ownership of the staked tokens and can be freely traded, used in DeFi protocols, or transferred to other users. This innovative approach allows users to access liquidity and utilize their staked assets while potentially earning staking rewards.

How Does Liquid Staking Work?

Liquid staking involves a three-step process: staking, issuing liquid staking tokens, and unstaking. The first step is similar to traditional staking, where users lock their tokens in a designated smart contract on a liquid staking platform. The platform then verifies the tokens' legitimacy and stores them securely.

In the next phase, the platform issues the users liquid staking tokens (LSTs) as receipts for their staked assets. 

These LSTs are pegged to the value of the original tokens and can be used in various DeFi protocols and blockchain applications. The platform also utilizes the staked assets for native staking, earning rewards from securing the PoS blockchain.

When users decide to unstake their tokens, they must burn the corresponding LSTs. This process typically incurs a fee, and the platform verifies the burn transaction on-chain before returning the unstaked tokens to the user. 

It's important to note that liquid staking platforms may also impose a bonding period, during which users may have to wait before receiving their unstaked tokens.

Advantages of Liquid Staking

Liquid staking offers several advantages over traditional staking methods. Firstly, it provides increased accessibility and flexibility to users. 

Unlike traditional staking, which often requires a bonding period, liquid staking allows users to unstake their tokens and access liquidity immediately. This flexibility enables efficient capital allocation and utilizing staked assets in other financial activities.

Secondly, liquid staking enhances the liquidity of staked assets. Traditional staking typically locks up the tokens for a specific period, restricting their use and trading. With liquid staking, users receive LSTs that can be freely traded, swapped, or used as collateral in lending protocols. 

This additional liquidity opens up a world of possibilities for users, allowing them to maximize the utility of their staked assets.

Liquid staking also promotes the composability of DeFi protocols. By enabling users to use their LSTs in various DeFi platforms, liquid staking enhances the interoperability and integration of different applications within the decentralized ecosystem. 

Users can lend, borrow, or participate in yield farming using their LSTs, increasing their engagement and potential returns.

Lastly, liquid staking may offer higher rewards compared to traditional staking. Users can earn additional rewards on top of their original staking rewards by utilizing LSTs in multiple staking platforms. 

This strategy allows for the optimization of staking returns without the need for additional investments.

Disadvantages of Liquid Staking

While liquid staking offers numerous advantages, it's important to consider this method's potential risks and challenges. One significant risk is the possibility of smart contract vulnerabilities. 

Since liquid staking involves interacting with smart contracts, there is a chance of exploitation if a flaw or bug exists in the code. Choosing reputable and audited liquid staking platforms to mitigate this risk is crucial.

Another challenge is the potential for price volatility. LSTs are pegged to the value of the original tokens, but there is a risk of de-pegging if market conditions fluctuate significantly. 

If the LSTs' value deviates from the underlying assets, users may experience losses when trading or redeeming their LSTs. It's essential to closely monitor market conditions and assess the risks before engaging in liquid staking.

Additionally, liquid staking may involve higher fees compared to traditional staking. Liquid staking platforms often charge fees for the issuance and burning of LSTs, as well as network transaction fees. 

These costs can impact the overall profitability of liquid staking, especially for users with smaller staking amounts.

Staking Vs. Liquid Staking: Key Differences

It's important to distinguish between traditional staking and liquid staking to understand their unique characteristics. 

Traditional staking involves locking up tokens in a smart contract without the ability to use or transfer them until the staking period ends. Stakers earn rewards solely from staking activities.

On the other hand, liquid staking provides users with a receipt token (LST) that represents ownership of the staked assets. These LSTs are freely transferable and can be used in DeFi protocols, providing users with additional liquidity and utility. 

Liquid staking enables users to potentially earn rewards while still participating in other blockchain activities, offering a more flexible approach compared to traditional staking.

Popular Crypto That Supports Liquid Staking

Liquid staking has gained significant traction across various blockchain networks, with several cryptocurrencies supporting this innovative method. 

Ethereum, one of the largest and most well-known blockchains, has implemented liquid staking following its transition to a PoS consensus mechanism. 

Users can stake their ETH and receive liquid staking tokens (LSTs), such as stETH, which can be used in DeFi protocols and traded on supported platforms.

Other popular cryptocurrencies that support liquid staking include Polkadot, Cardano, Avalanche, and Cosmos. Each of these projects offers its own liquid staking solutions, allowing users to stake their tokens and benefit from the advantages of liquidity and additional utility.

How to Start Liquid Staking?

If you're interested in participating in liquid staking, choosing a reputable and secure platform that supports this method is essential. 

Ledger, a prominent cryptocurrency hardware wallet provider, offers a liquid staking platform through its Ledger Live ecosystem. 

Connecting your Ledger device to Ledger Live and navigating to the Discover tab allows you to explore liquid staking options available on supported networks such as Polygon, Hedera, BNB, Near, Terra 2.0, and Fantom.

By utilizing Ledger's secure infrastructure, you can stake your tokens, receive liquid staking tokens (LSTs), and participate in the vibrant world of DeFi while maintaining full control and custody of your assets.

Conclusion

Liquid staking is an innovative approach to maximize the potential of your crypto assets. By combining the benefits of staking with increased liquidity and utility, liquid staking offers users a flexible and efficient way to participate in PoS networks while enjoying the opportunities provided by DeFi protocols. 

It's important to weigh the advantages and disadvantages, consider the risks, and choose reliable platforms to ensure a successful liquid staking experience. 

With the growing adoption and development of liquid staking solutions, this method is poised to play a significant role in the future of blockchain-based finance.

Frequently Asked Questions

Q1. How is liquid staking different from traditional staking?

Liquid staking allows users to maintain liquidity and utilize their staked assets, while traditional staking locks up tokens for a specific period without the ability to use or transfer them until the staking period ends.

Q2. Which cryptocurrencies support liquid staking?

Popular cryptocurrencies that support liquid staking include Ethereum, Polkadot, Cardano, Avalanche, and Cosmos. Each project offers its own solutions for users to participate in liquid staking.

Q3. How can I start liquid staking?

To start liquid staking, choose a reputable platform that supports this method, such as Ledger's liquid staking platform. Connect your Ledger device to Ledger Live, explore the available options, and stake your tokens while maintaining full control of your assets.

Q4. Is liquid staking safe?

Liquid staking carries risks, such as smart contract vulnerabilities and price volatility. It's crucial to choose secure platforms, conduct thorough research, and stay informed about potential risks and developments in the cryptocurrency space.

Q5. Can I unstake my tokens in liquid staking?

Users can unstake their tokens in liquid staking by burning the corresponding liquid staking tokens (LSTs). However, the process may involve fees, and a bonding period may exist before users can receive their unstaked tokens.

Q6. What is the future of liquid staking?

Liquid staking is expected to play a significant role in the future of blockchain-based finance. As more projects adopt and develop liquid staking solutions, users can expect increased accessibility, liquidity, and integration with DeFi protocols, further enhancing the potential of their crypto assets.

Disclaimer

The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.

Token Metrics does not recommend buying, selling, or holding any cryptocurrency. Conduct your due diligence and consult your financial advisor before making investment decisions.

Build Smarter Crypto Apps &
AI Agents in Minutes, Not Months
Real-time prices, trading signals, and on-chain insights all from one powerful API.
Grab a Free API Key
Token Metrics Team
Token Metrics Team

Recent Posts

Token Metrics API

Quantmetrics API: Measure Risk & Reward in One Call

Sam Monac
5 min
MIN

Most traders see price—quants see probabilities. The Quantmetrics API turns raw performance into risk-adjusted stats like Sharpe, Sortino, volatility, drawdown, and CAGR so you can compare tokens objectively and build smarter bots and dashboards. In minutes, you’ll query /v2/quantmetrics, render a clear performance snapshot, and ship a feature that customers trust. Start by grabbing your key at Get API Key, Run Hello-TM to verify your first call, then Clone a Template to go live fast.

‍

What You’ll Build in 2 Minutes

  • A minimal script that fetches Quantmetrics for a token via /v2/quantmetrics (e.g., BTC, ETH, SOL).

  • A smoke-test curl you can paste into your terminal.

  • A UI pattern that displays Sharpe, Sortino, volatility, max drawdown, CAGR, and lookback window.

  • Endpoints to add next: /v2/tm-grade (one-score signal), /v2/trading-signals / /v2/hourly-trading-signals (timing), /v2/resistance-support (risk placement), /v2/price-prediction (scenario planning).

Why This Matters

Risk-adjusted truth beats hype. Price alone hides tail risk and whipsaws. Quantmetrics compresses edge, risk, and consistency into metrics that travel across assets and timeframes—so you can rank universes, size positions, and communicate performance like a pro.

Built for dev speed. A clean REST schema, predictable latency, and easy auth mean you can plug Sharpe/Sortino into bots, dashboards, and screeners without maintaining your own analytics pipeline. Pair with caching and batching to serve fast pages at scale.

Where to Find 

The Quant Metrics cURL request is located in the top right of the API Reference, allowing you to easily integrate it with your application.

‍

👉 Keep momentum: Get API Key • Run Hello-TM • Clone a Template

Live Demo & Templates

  • Risk Snapshot Widget (Dashboard): Show Sharpe, Sortino, volatility, and drawdown per token; color-code by thresholds.

  • Allocator Screener: Rank tokens by Sharpe, filter by drawdown < X%, and surface a top-N list.

  • Bot Sizer: Use Quantmetrics to scale position sizes (e.g., lower risk = larger size), combined with Trading Signals for entries/exits.

Kick off from quickstarts in the docs—fork a dashboard or screener template, plug your key, and deploy in minutes. Validate your environment with Run Hello-TM; when you need more throughput or webhooks, compare API plans.

How It Works (Under the Hood)

Quantmetrics computes risk-adjusted performance over a chosen lookback (e.g., 30d, 90d, 1y). You’ll receive a JSON snapshot with core statistics:

  • Sharpe ratio: excess return per unit of total volatility.

  • Sortino ratio: penalizes downside volatility more than upside.

  • Volatility: standard deviation of returns over the window.

  • Max drawdown: worst peak-to-trough decline.

  • CAGR / performance snapshot: geometric growth rate and best/worst periods.

Call /v2/quantmetrics?symbol=<ASSET>&window=<LOOKBACK> to fetch the current snapshot. For dashboards spanning many tokens, batch symbols and apply short-TTL caching. If you generate alerts (e.g., “Sharpe crossed 1.5”), run a scheduled job and queue notifications to avoid bursty polling.

Production Checklist

  • Rate limits: Understand your tier caps; add client-side throttling and queues.

  • Retries & backoff: Exponential backoff with jitter; treat 429/5xx as transient.

  • Idempotency: Prevent duplicate downstream actions on retried jobs.

  • Caching: Memory/Redis/KV with short TTLs; pre-warm popular symbols and windows.

  • Batching: Fetch multiple symbols per cycle; parallelize carefully within limits.

  • Error catalog: Map 4xx/5xx to clear remediation; log request IDs for tracing.

  • Observability: Track p95/p99 latency and error rates; alert on drift.

  • Security: Store API keys in secrets managers; rotate regularly.

Use Cases & Patterns

  • Bot Builder (Headless): Gate entries by Sharpe ≥ threshold and drawdown ≤ limit, then trigger with /v2/trading-signals; size by inverse volatility.

  • Dashboard Builder (Product): Add a Quantmetrics panel to token pages; allow switching lookbacks (30d/90d/1y) and export CSV.

  • Screener Maker (Lightweight Tools): Top-N by Sortino with filters for volatility and sector; add alert toggles when thresholds cross.

  • Allocator/PM Tools: Blend CAGR, Sharpe, drawdown into a composite score to rank reallocations; show methodology for trust.

  • Research/Reporting: Weekly digest of tokens with Sharpe ↑, drawdown ↓, and volatility ↓.

Next Steps

  • Get API Key — start free and generate a key in seconds.

  • Run Hello-TM — verify your first successful call.

  • Clone a Template — deploy a screener or dashboard today.

  • Watch the demo: VIDEO_URL_HERE

  • Compare plans: Scale with API plans.

FAQs

1) What does the Quantmetrics API return?
A JSON snapshot of risk-adjusted metrics (e.g., Sharpe, Sortino, volatility, max drawdown, CAGR) for a symbol and lookback window—ideal for ranking, sizing, and dashboards.

2) How fresh are the stats? What about latency/SLOs?
Responses are engineered for predictable latency. For heavy UI usage, add short-TTL caching and batch requests; for alerts, use scheduled jobs or webhooks where available.

3) Can I use Quantmetrics to size positions in a live bot?
Yes—many quants size inversely to volatility or require Sharpe ≥ X to trade. Always backtest and paper-trade before going live; past results are illustrative, not guarantees.

4) Which lookback window should I choose?
Short windows (30–90d) adapt faster but are noisier; longer windows (6–12m) are steadier but slower to react. Offer users a toggle and cache each window.

5) Do you provide SDKs or examples?
REST is straightforward (JS/Python above). Docs include quickstarts, Postman collections, and templates—start with Run Hello-TM.

6) Polling vs webhooks for quant alerts?
Dashboards usually use cached polling. For threshold alerts (e.g., Sharpe crosses 1.0), run scheduled jobs and queue notifications to keep usage smooth and idempotent.

7) Pricing, limits, and enterprise SLAs?
Begin free and scale up. See API plans for rate limits and enterprise SLA options.

‍

‍

Token Metrics API

Crypto Trading Signals API: Put Bullish/Bearish Calls Right in Your App

Sam Monac
7 min
MIN

Timing makes or breaks every trade. The crypto trading signals API from Token Metrics lets you surface bullish and bearish calls directly in your product—no spreadsheet wrangling, no chart gymnastics. In this guide, you’ll hit the /v2/trading-signals endpoint, display actionable signals on a token (e.g., SOL, BTC, ETH), and ship a conversion-ready feature for bots, dashboards, or Discord. Start by creating a key on Get API Key, then Run Hello-TM and Clone a Template to go live fast.

‍

What You’ll Build in 2 Minutes

  • A minimal script that fetches Trading Signals via /v2/trading-signals for one symbol (e.g., SOL).

  • A copy-paste curl to smoke-test your key.

  • A UI pattern to render signal, confidence/score, and timestamp in your dashboard or bot.

  • Endpoints to add next: /v2/hourly-trading-signals (intraday updates), /v2/resistance-support (risk placement), /v2/tm-grade (one-score view), /v2/quantmetrics (risk/return context).

Why This Matters

Action over analysis paralysis. Traders don’t need more lines on a chart—they need an opinionated call they can automate. The trading signals API compresses technical momentum and regime reads into Bullish/Bearish events you can rank, alert on, and route into strategies.

Built for dev speed and reliability. A clean schema, predictable performance, and straightforward auth make it easy to wire signals into bots, dashboards, and community tools. Pair with short-TTL caching or webhooks to minimize polling and keep latency low.

Where to Find 

You can find the cURL request for Crypto Trading Signals in the top right corner of the API Reference. Use it to access the latest signals!

👉 Keep momentum: Get API Key • Run Hello-TM • Clone a Template

Live Demo & Templates

  • Trading Bot Starter: Use Bullish/Bearish calls to trigger paper trades; add take-profit/stop rules with Support/Resistance.

  • Dashboard Signal Panel: Show the latest call, confidence, and last-updated time; add a history table for context.

  • Discord/Telegram Alerts: Post signal changes to a channel with a link back to your app.

Fork a quickstart from the docs, plug your key, and deploy. Validate your environment by Running Hello-TM. When you need more throughput or webhooks, compare API plans.

How It Works (Under the Hood)

Trading Signals distill model evidence (e.g., momentum regimes and pattern detections) into Bullish or Bearish calls with metadata such as confidence/score and timestamp. You request /v2/trading-signals?symbol=<ASSET> and render the most recent event, or a small history, in your UI.

For intraday workflows, use /v2/hourly-trading-signals to update positions or alerts more frequently. Dashboards typically use short-TTL caching or batched fetches; headless bots lean on webhooks, queues, or short polling with backoff to avoid spiky API usage.

Production Checklist

  • Rate limits: Know your tier caps; add client-side throttling and queues.

  • Retries/backoff: Exponential backoff with jitter; treat 429/5xx as transient.

  • Idempotency: Guard downstream actions (don’t double-trade on retries).

  • Caching: Memory/Redis/KV with short TTLs for reads; pre-warm popular symbols.

  • Webhooks & jobs: Prefer webhooks or scheduled workers for signal change alerts.

  • Pagination/Bulk: Batch symbols; parallelize with care; respect limits.

  • Error catalog: Map common 4xx/5xx to clear fixes; log request IDs.

  • Observability: Track p95/p99 latency, error rate, and alert delivery success.

  • Security: Keep keys in a secrets manager; rotate regularly.

Use Cases & Patterns

  • Bot Builder (Headless): Route Bullish into candidate entries; confirm with /v2/resistance-support for risk and TM Grade for quality.

  • Dashboard Builder (Product): Add a “Signals” module per token; color-code state and show history for credibility.

  • Screener Maker (Lightweight Tools): Filter lists by Bullish state; sort by confidence/score; add alert toggles.

  • Community/Discord: Post signal changes with links to token pages; throttle to avoid noise.

  • Allocator/PM Tools: Track signal hit rates by sector/timeframe to inform position sizing (paper-trade first).

Next Steps

  • Get API Key — create a key and start free.

  • Run Hello-TM — confirm your first successful call.

  • Clone a Template — deploy a bot, dashboard, or alerting tool today.

  • Watch the demo: VIDEO_URL_HERE

  • Compare plans: Scale usage and unlock higher limits with API plans.

FAQs

1) What does the Trading Signals API return?
A JSON payload with the latest Bullish/Bearish call for a symbol, typically including a confidence/score and generated_at timestamp. You can render the latest call or a recent history for context.

2) Is it real-time? What about latency/SLOs?
Signals are designed for timely, programmatic use with predictable latency. For faster cycles, use /v2/hourly-trading-signals. Add caching and queues/webhooks to reduce round-trips.

3) Can I use the signals in a live trading bot?
Yes—many developers do. A common pattern is: Signals → candidate entry, Support/Resistance → stop/targets, Quantmetrics → risk sizing. Always backtest and paper-trade before going live.

4) How accurate are the signals?
Backtests are illustrative, not guarantees. Treat signals as one input in a broader framework with risk controls. Evaluate hit rates and drawdowns on your universe/timeframe.

5) Do you provide SDKs and examples?
You can integrate via REST using JavaScript and Python snippets above. The docs include quickstarts, Postman collections, and templates—start with Run Hello-TM.

6) Polling vs webhooks for alerts?
Dashboards often use cached polling. For bots/alerts, prefer webhooks or scheduled jobs and keep retries idempotent to avoid duplicate trades or messages.

7) Pricing, limits, and enterprise SLAs?
Begin free and scale as you grow. See API plans for allowances; enterprise SLAs and support are available.

‍

Token Metrics API

Technology Grade API: Identify Real Innovation and Build Smarter Crypto Apps

Sam Monac
7 min
MIN

Hype is loud, but code is what lasts. The Technology Grade API helps you measure the engineering strength behind a token—scalability, innovation, and real code quality—so you can prioritize serious projects in your bots, dashboards, or research tools. In this guide, you’ll query the /v2/technology-grade endpoint, embed the score in your UI, and ship a feature that turns technical due diligence into a single actionable signal. Start by grabbing your key at Get API Key, Run Hello-TM to validate your first call, then Clone a Template to go live fast.

‍

What You’ll Build in 2 Minutes

  • A minimal script that fetches Technology Grade for any symbol via /v2/technology-grade.

  • A copy-paste curl to smoke-test your key.

  • A starter UX pattern: display the headline Technology Grade + component breakdown (scalability, innovation, code quality).

  • Endpoints to add next for full context: /v2/fundamental-grade (business quality), /v2/tm-grade (technicals/sentiment/momentum), /v2/trading-signals (timing), /v2/quantmetrics (risk/return).

Why This Matters

Separate hype from substance. Whitepapers and roadmaps are cheap; shipped code, throughput, and upgrade cadence are not. The Technology Grade API rolls engineering reality into a comparable score so you can rank ecosystems, filter listings, and surface projects with staying power.

Faster diligence, clearer decisions. For bot builders, Technology Grade is an upstream filter that keeps low-quality projects out of your universe. For dashboard builders, it adds credibility—users can see why a project ranks well. And for screeners, it’s a one-score signal that’s easy to sort, badge, and alert on with low latency.

Where to Find 

For the Technology Grade information, check the top right of the API Reference. You'll find the cURL request to connect effortlessly.

‍

‍

👉 Next: Get API Key • Run Hello-TM • Clone a Template

Live Demo & Templates

  • Investor/Due-Diligence Token Page: Show a Technology Grade dial with component bars and a “What improved?” changelog snippet.

  • Screener/Leaderboard: Rank by Technology Grade; add sector and market-cap filters; badge “Rising Tech” week-over-week.

  • Bot Universe Filter: Require a minimum Technology Grade before a token is eligible for strategies; combine with signals for entries/exits.

Kick off from quickstarts in the docs—fork a dashboard or screener and deploy. Validate your environment with Run Hello-TM, then scale usage. When you need higher limits and SLAs, compare API plans.

How It Works (Under the Hood)

Technology Grade synthesizes engineering-centric evidence—such as throughput/scalability, rate of innovation (feature velocity, upgrade cadence), and code quality (maintainability, robustness cues)—into a normalized score and grade (e.g., Strong / Average / Weak). It’s designed to be comparable across projects and stable enough to inform filters, tiers, and badges.

At query time, you request /v2/technology-grade?symbol=<ASSET>. The response includes the headline score and component scores you can display in bars or a radar chart. For dashboards with many assets, use batched calls and short-TTL caching. If you push upgrade/downgrade alerts, queue notifications or use webhooks to avoid bursty polling.

Production Checklist

  • Rate limits: Understand your tier’s caps; add client-side throttling.

  • Retries & backoff: Use exponential backoff with jitter; handle 429/5xx gracefully.

  • Idempotency: Ensure retried fetches don’t double-trigger downstream actions.

  • Caching: Memory/Redis/KV with short TTLs; pre-warm popular symbols; ETag if available.

  • Webhooks & jobs: Prefer queued jobs or webhooks for grade-change alerts.

  • Pagination/Bulk: Batch symbols; parallelize with care; respect limits.

  • Error catalog: Map common 4xx/5xx to remediation steps; log request IDs.

  • Observability: Track p95/p99 latency and error rates per endpoint; alert on drift.

  • Security: Keep API keys in secrets managers; rotate and scope keys.

Use Cases & Patterns

  • Bot Builder (Headless): Apply a Technology Grade threshold to define your tradable universe; then confirm timing with /v2/trading-signals and place risk with /v2/resistance-support.

  • Dashboard Builder (Product): Add a “Tech” tab on token pages with the headline grade, components, and a short narrative for users (“What’s driving this score?”).

  • Screener Maker (Lightweight Tools): Ship a Top-N by Technology Grade leaderboard; add badges for “Rising Tech” based on week-over-week deltas.

  • Listing/Research Teams: Gate listings or research coverage using Technology Grade plus Fundamental Grade for balanced quality screens.

  • Enterprise Due Diligence: Export grades nightly to internal systems; alert on downgrades crossing critical thresholds.

Next Steps

  • Get API Key — create a key and start free.

  • Run Hello-TM — confirm your first successful call.

  • Clone a Template — deploy a screener or token page today.

  • Watch the demo: VIDEO_URL_HERE

  • Compare plans: Scale usage and unlock higher limits with API plans.

FAQs

1) What does the Technology Grade API return?
A JSON payload with an overall score/grade plus component scores (e.g., scalability, innovation, code quality) and timestamps. Use the overall score for ranking and components for explanation.

2) Is this real-time, and what about latency/SLOs?
The endpoint is engineered for predictable latency suitable for dashboards and filters. For frequent refresh or alerts, combine short-TTL caching with queued jobs or webhooks to minimize round-trips.

3) How should I combine Technology Grade with other signals?
A common pattern: Technology Grade (engineering quality) + Fundamental Grade (business quality) + TM Grade (technicals/sentiment) + Trading Signals (timing) + Support/Resistance (risk placement).

4) How “accurate” is Technology Grade?
It’s an opinionated synthesis of engineering evidence, not financial advice. Use it as part of a diversified framework; validate with your own backtests and risk controls.

5) Do you provide SDKs or examples?
You can integrate via REST (JS/Python examples above). The docs include quickstarts, Postman collections, and templates—start by Run Hello-TM.

6) Polling vs webhooks for grade changes?
For UI pages, cached polling is fine. For alerts (upgrades/downgrades), prefer webhooks or scheduled jobs to avoid spiky traffic and rate-limit issues.

7) Pricing, limits, and enterprise SLAs?
Begin free and scale up as needed. See API plans for allowances; enterprise SLAs and support are available.

‍

Choose from Platinum, Gold, and Silver packages
Reach with 25–30% open rates and 0.5–1% CTR
Craft your own custom ad—from banners to tailored copy
Perfect for Crypto Exchanges, SaaS Tools, DeFi, and AI Products