Text Link
Text Link
Text Link
Text Link
Text Link
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Stop Guessing, Start Trading: The Token Metrics API Advantage

Announcements

Big news: We’re cranking up the heat on AI-driven crypto analytics with the launch of the Token Metrics API and our official SDK (Software Development Kit). This isn’t just an upgrade – it's a quantum leap, giving traders, hedge funds, developers, and institutions direct access to cutting-edge market intelligence, trading signals, and predictive analytics.

Crypto markets move fast, and having real-time, AI-powered insights can be the difference between catching the next big trend or getting left behind. Until now, traders and quants have been wrestling with scattered data, delayed reporting, and a lack of truly predictive analytics. Not anymore.

The Token Metrics API delivers 32+ high-performance endpoints packed with powerful AI-driven insights right into your lap, including:

  • Trading Signals: AI-driven buy/sell recommendations based on real-time market conditions.
  • Investor & Trader Grades: Our proprietary risk-adjusted scoring for assessing crypto assets.
  • Price Predictions: Machine learning-powered forecasts for multiple time frames.
  • Sentiment Analysis: Aggregated insights from social media, news, and market data.
  • Market Indicators: Advanced metrics, including correlation analysis, volatility trends, and macro-level market insights.

Getting started with the Token Metrics API is simple:

  1. Sign up at www.tokenmetrics.com/api
  2. Generate an API key and explore sample requests.
  3. Choose a tier–start with 50 free API calls/month, or stake TMAI tokens for premium access.
  4. Optionally–download the SDK, install it for your preferred programming language, and follow the provided setup guide.

At Token Metrics, we believe data should be decentralized, predictive, and actionable. 

The Token Metrics API & SDK bring next-gen AI-powered crypto intelligence to anyone looking to trade smarter, build better, and stay ahead of the curve. With our official SDK, developers can plug these insights into their own trading bots, dashboards, and research tools – no need to reinvent the wheel.

Research

Building High-Performance APIs with FastAPI

Token Metrics Team
5
MIN

FastAPI has rapidly become a go-to framework for Python developers who need fast, async-ready web APIs. In this post we break down why FastAPI delivers strong developer ergonomics and runtime performance, how to design scalable endpoints, and practical patterns for production deployment. Whether you are prototyping an AI-backed service or integrating real-time crypto feeds, understanding FastAPI's architecture helps you build resilient APIs that scale.

Overview: What Makes FastAPI Fast?

FastAPI combines modern Python type hints, asynchronous request handling, and an automatic interactive API docs system to accelerate development and runtime efficiency. It is built on top of Starlette for the web parts and Pydantic for data validation. Key advantages include:

  • Asynchronous concurrency: Native support for async/await lets FastAPI handle I/O-bound workloads with high concurrency when served by ASGI servers like Uvicorn or Hypercorn.
  • Type-driven validation: Request and response schemas are derived from Python types, reducing boilerplate and surface area for bugs.
  • Auto docs: OpenAPI and Swagger UI are generated automatically, improving discoverability and client integration.

These traits make FastAPI suitable for microservices, ML model endpoints, and real-time data APIs where latency and developer velocity matter.

Performance & Scalability Patterns

Performance is a combination of framework design, server selection, and deployment topology. Consider these patterns:

  • ASGI server tuning: Use Uvicorn with Gunicorn workers for multi-core deployments (example: Gunicorn to manage multiple Uvicorn worker processes).
  • Concurrency model: Prefer async operations for external I/O (databases, HTTP calls). Use thread pools for CPU-bound tasks or offload to background workers like Celery or RQ.
  • Connection pooling: Maintain connection pools to databases and upstream services to avoid per-request handshake overhead.
  • Horizontal scaling: Deploy multiple replicas behind a load balancer and utilize health checks and graceful shutdown to ensure reliability.

Measure latency and throughput under realistic traffic using tools like Locust or k6, and tune worker counts and max requests to balance memory and CPU usage.

Best Practices for Building APIs with FastAPI

Adopt these practical steps to keep APIs maintainable and secure:

  1. Schema-first design: Define request and response models early with Pydantic, and use OpenAPI to validate client expectations.
  2. Versioning: Include API versioning in your URL paths or headers to enable iterative changes without breaking clients.
  3. Input validation & error handling: Rely on Pydantic for validation and implement consistent error responses with clear status codes.
  4. Authentication & rate limiting: Protect endpoints with OAuth2/JWT or API keys and apply rate limits via middleware or API gateways.
  5. CI/CD & testing: Automate unit and integration tests, and include performance tests in CI to detect regressions early.

Document deployment runbooks that cover database migrations, secrets rotation, and safe schema migrations to reduce operational risk.

Integrating AI and Real-Time Data

FastAPI is commonly used to expose AI model inference endpoints and aggregate real-time data streams. Key considerations include:

  • Model serving: For CPU/GPU-bound inference, consider dedicated model servers (e.g., TensorFlow Serving, TorchServe) or containerized inference processes, with FastAPI handling orchestration and routing.
  • Batching & async inference: Implement request batching if latency and throughput profiles allow it. Use async I/O for data fetches and preprocessing.
  • Data pipelines: Separate ingestion, processing, and serving layers. Use message queues (Kafka, RabbitMQ) for event-driven flows and background workers for heavy transforms.

AI-driven research and analytics tools can augment API development and monitoring. For example, Token Metrics provides structured crypto insights and on-chain metrics that can be integrated into API endpoints for analytics or enrichment workflows.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is FastAPI and when should I use it?

FastAPI is a modern Python web framework optimized for building APIs quickly using async support and type annotations. Use it when you need high-concurrency I/O performance, automatic API docs, and strong input validation for services like microservices, ML endpoints, or data APIs.

Should I write async or sync endpoints?

If your endpoint performs network or I/O-bound operations (database queries, HTTP calls), async endpoints with awaitable libraries improve concurrency. For CPU-heavy tasks, prefer offloading to background workers or separate services to avoid blocking the event loop.

What are common deployment options for FastAPI?

Common patterns include Uvicorn managed by Gunicorn for process management, containerized deployments on Kubernetes, serverless deployments via providers that support ASGI, and platform-as-a-service options that accept Docker images. Choose based on operational needs and scaling model.

How do I secure FastAPI endpoints?

Implement authentication (OAuth2, JWT, API keys), enforce HTTPS, validate inputs with Pydantic models, and apply rate limiting. Use security headers and monitor logs for suspicious activity. Consider using API gateways for centralized auth and throttling.

How should I monitor and debug FastAPI in production?

Instrument endpoints with structured logging, distributed tracing, and metrics (request latency, error rates). Use APM tools compatible with ASGI frameworks. Configure health checks, and capture exception traces to diagnose errors without exposing sensitive data.

How do I test FastAPI applications?

Use the TestClient from FastAPI (built on Starlette) for endpoint tests, and pytest for unit tests. Include schema validation tests, contract tests for public APIs, and performance tests with k6 or Locust for load characterization.

Disclaimer: This article is educational and technical in nature. It explains development patterns, architecture choices, and tooling options for API design and deployment. It is not financial, trading, or investment advice. Always conduct independent research and follow your organizations compliance policies when integrating external data or services.

Research

Building High-Performance APIs with FastAPI

Token Metrics Team
5
MIN

FastAPI has emerged as a go-to framework for building fast, scalable, and developer-friendly APIs in Python. Whether you are prototyping a machine learning inference endpoint, building internal microservices, or exposing realtime data to clients, understanding FastAPI’s design principles and best practices can save development time and operational costs. This guide walks through the technology fundamentals, pragmatic design patterns, deployment considerations, and how to integrate modern AI tools safely and efficiently.

Overview: What Makes FastAPI Fast?

FastAPI is built on Starlette for the web parts and Pydantic for data validation. It leverages Python’s async/await syntax and ASGI (Asynchronous Server Gateway Interface) to handle high concurrency with non-blocking I/O. Key features that contribute to its performance profile include:

  • Async-first architecture: Native support for asynchronous endpoints enables efficient multiplexing of I/O-bound tasks.
  • Automatic validation and docs: Pydantic-based validation reduces runtime errors and generates OpenAPI schemas and interactive docs out of the box.
  • Small, focused stack: Minimal middleware and lean core reduce overhead compared to some full-stack frameworks.

In practice, correctly using async patterns and avoiding blocking calls (e.g., heavy CPU-bound tasks or synchronous DB drivers) is critical to achieve the theoretical throughput FastAPI promises.

Design Patterns & Best Practices

Adopt these patterns to keep your FastAPI codebase maintainable and performant:

  1. Separate concerns: Keep routing, business logic, and data access in separate modules. Use dependency injection for database sessions, authentication, and configuration.
  2. Prefer async I/O: Use async database drivers (e.g., asyncpg for PostgreSQL), async HTTP clients (httpx), and async message brokers when possible. If you must call blocking code, run it in a thread pool via asyncio.to_thread or FastAPI’s background tasks.
  3. Schema-driven DTOs: Define request and response models with Pydantic to validate inputs and serialize outputs consistently. This reduces defensive coding and improves API contract clarity.
  4. Version your APIs: Use path or header-based versioning to avoid breaking consumers when iterating rapidly.
  5. Pagination and rate limiting: For endpoints that return large collections, implement pagination and consider rate-limiting to protect downstream systems.

Applying these patterns leads to clearer contracts, fewer runtime errors, and easier scaling.

Performance Tuning and Monitoring

Beyond using async endpoints, real-world performance tuning focuses on observability and identifying bottlenecks:

  • Profiling: Profile endpoints under representative load to find hotspots. Tools like py-spy or Scalene can reveal CPU vs. I/O contention.
  • Tracing and metrics: Integrate OpenTelemetry or Prometheus to gather latency, error rates, and resource metrics. Correlate traces across services to diagnose distributed latency.
  • Connection pooling: Ensure database and HTTP clients use connection pools tuned for your concurrency levels.
  • Caching: Use HTTP caching headers, in-memory caches (Redis, Memcached), or application-level caches for expensive or frequently requested data.
  • Async worker offloading: Offload CPU-heavy or long-running tasks to background workers (e.g., Celery, Dramatiq, or RQ) to keep request latency low.

Measure before and after changes. Small configuration tweaks (worker counts, keepalive settings) often deliver outsized latency improvements compared to code rewrites.

Deployment, Security, and Scaling

Productionizing FastAPI requires attention to hosting, process management, and security hardening:

  • ASGI server: Use a robust ASGI server such as Uvicorn or Hypercorn behind a process manager (systemd) or a supervisor like Gunicorn with Uvicorn workers.
  • Containerization: Containerize with multi-stage Dockerfiles to keep images small. Use environment variables and secrets management for configuration.
  • Load balancing: Place a reverse proxy (NGINX, Traefik) or cloud load balancer in front of your ASGI processes to manage TLS, routing, and retries.
  • Security: Validate and sanitize inputs, enforce strict CORS policies, and implement authentication and authorization (OAuth2, JWT) consistently. Keep dependencies updated and monitor for CVEs.
  • Autoscaling: In cloud environments, autoscale based on request latency and queue depth. For stateful workloads or in-memory caches, ensure sticky session or state replication strategies.

Combine operational best practices with continuous monitoring to keep services resilient as traffic grows.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: How fast is FastAPI compared to Flask or Django?

FastAPI often outperforms traditional WSGI frameworks like Flask or Django for I/O-bound workloads because it leverages ASGI and async endpoints. Benchmarks depend heavily on endpoint logic, database drivers, and deployment configuration. For CPU-bound tasks, raw Python performance is similar; offload heavy computation to workers.

FAQ: Should I rewrite existing Flask endpoints to FastAPI?

Rewrite only if you need asynchronous I/O, better schema validation, or automatic OpenAPI docs. For many projects, incremental migration or adding new async services is a lower-risk approach than a full rewrite.

FAQ: How do I handle background tasks and long-running jobs?

Use background workers or task queues (Celery, Dramatiq) for long-running jobs. FastAPI provides BackgroundTasks for simple fire-and-forget operations, but distributed task systems are better for retries, scheduling, and scaling.

FAQ: What are common pitfalls when using async in FastAPI?

Common pitfalls include calling blocking I/O inside async endpoints (e.g., synchronous DB drivers), not using connection pools properly, and overusing threads. Always verify that third-party libraries are async-compatible or run them in a thread pool.

FAQ: How can FastAPI integrate with AI models and inference pipelines?

FastAPI is a good fit for serving model inference because it can handle concurrent requests and easily serialize inputs and outputs. For heavy inference workloads, serve models with dedicated inference servers (TorchServe, TensorFlow Serving) or containerized model endpoints and use FastAPI as a thin orchestration layer. Implement batching, request timeouts, and model versioning to manage performance and reliability.

Disclaimer

This article is educational and technical in nature. It does not provide investment, legal, or professional advice. Evaluate tools and design decisions according to your project requirements and compliance obligations.

Research

Fast, Reliable APIs with FastAPI

Token Metrics Team
5
MIN

Fast API design is no longer just about response time — it’s about developer ergonomics, safety, observability, and the ability to integrate modern AI services. FastAPI (commonly referenced by the search phrase "fast api") has become a favored framework in Python for building high-performance, async-ready APIs with built-in validation. This article explains the core concepts, best practices, and deployment patterns to help engineering teams build reliable, maintainable APIs that scale.

Overview: What makes FastAPI distinct?

FastAPI is a Python web framework built on top of ASGI standards (like Starlette and Uvicorn) that emphasizes developer speed and runtime performance. Key differentiators include automatic request validation via Pydantic, type-driven documentation (OpenAPI/Swagger UI generated automatically), and first-class async support. Practically, that means less boilerplate, clearer contracts between clients and servers, and competitive throughput for I/O-bound workloads.

Async model and performance considerations

At the heart of FastAPI’s performance is asynchronous concurrency. By leveraging async/await, FastAPI handles many simultaneous connections efficiently, especially when endpoints perform non-blocking I/O such as database queries, HTTP calls to third-party services, or interactions with AI models. Important performance factors to evaluate:

  • ASGI server choice: Uvicorn and Hypercorn are common; tuning workers and loop settings affects latency and throughput.
  • Blocking calls: Avoid CPU-bound work inside async endpoints; offload heavy computation to worker processes or task queues.
  • Connection pooling: Use async database drivers and HTTP clients (e.g., asyncpg, httpx) with pooled connections to reduce latency.
  • Metrics and profiling: Collect request duration, error rates, and concurrency metrics to identify hotspots.

Design patterns: validation, schemas, and dependency injection

FastAPI’s integration with Pydantic makes data validation explicit and type-driven. Use Pydantic models for request and response schemas to ensure inputs are sanitized and outputs are predictable. Recommended patterns:

  • Separate DTOs and domain models: Keep Pydantic models for I/O distinct from internal database or business models to avoid tight coupling.
  • Dependencies: FastAPI’s dependency injection simplifies authentication, database sessions, and configuration handling while keeping endpoints concise.
  • Versioning and contracts: Expose clear OpenAPI contracts and consider semantic versioning for breaking changes.

Integration with AI services and external APIs

Many modern APIs act as orchestrators for AI models or third-party data services. FastAPI’s async-first design pairs well with calling model inference endpoints or streaming responses. Practical tips when integrating AI services:

  • Use async clients to call external inference or data APIs to prevent blocking the event loop.
  • Implement robust timeouts, retries with backoff, and circuit breakers to handle intermittent failures gracefully.
  • Cache deterministic responses where appropriate, and use paginated or streaming responses for large outputs to reduce memory pressure.

Deployment, scaling, and observability

Deploying FastAPI to production typically involves containerized ASGI servers, an API gateway, and autoscaling infrastructure. Core operational considerations include:

  • Process model: Run multiple Uvicorn workers per host for CPU-bound workloads or use worker pools for synchronous tasks.
  • Autoscaling: Configure horizontal scaling based on request latency and queue length rather than CPU alone for I/O-bound services.
  • Logging and tracing: Integrate structured logs, distributed tracing (OpenTelemetry), and request/response sampling to diagnose issues.
  • Security: Enforce input validation, rate limiting, authentication layers, and secure secrets management.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is the difference between FastAPI and Flask?

FastAPI is built for the async ASGI ecosystem and emphasizes type-driven validation and automatic OpenAPI documentation. Flask is a synchronous WSGI framework that is lightweight and flexible but requires more manual setup for async support, validation, and schema generation. Choose based on concurrency needs, existing ecosystem, and developer preference.

When should I use async endpoints in FastAPI?

Use async endpoints when your handler performs non-blocking I/O such as database queries with async drivers, external HTTP requests, or calls to async message brokers. For CPU-heavy tasks, prefer background workers or separate services to avoid blocking the event loop.

How do Pydantic models help with API reliability?

Pydantic enforces input types and constraints at the boundary of your application, reducing runtime errors and making APIs self-documenting. It also provides clear error messages, supports complex nested structures, and integrates tightly with FastAPI’s automatic documentation.

What are common deployment pitfalls for FastAPI?

Common issues include running blocking code in async endpoints, inadequate connection pooling, missing rate limiting, and insufficient observability. Ensure proper worker/process models, async drivers, and graceful shutdown handling when deploying to production.

How can I test FastAPI applications effectively?

Use FastAPI’s TestClient (based on Starlette’s testing utilities) for endpoint tests and pytest for unit and integration tests. Mock external services and use testing databases or fixtures for repeatable test runs. Also include load testing to validate performance under expected concurrency.

Is FastAPI suitable for production-grade microservices?

Yes. When combined with proper patterns—type-driven design, async-safe libraries, containerization, observability, and scalable deployment—FastAPI is well-suited for production microservices focused on I/O-bound workloads and integrations with AI or external APIs.

Disclaimer

This article is for educational and informational purposes only. It does not constitute professional, legal, or investment advice. Evaluate tools and architectures according to your organization’s requirements and consult qualified professionals when needed.

Recent Posts

No Item Found
Research

Rise of AI Coins: How AI Narratives Are Fueling the Next Bull Run

Token Metrics Team
4 min
MIN

Introduction
AI is no longer just a tech buzzword — it’s a dominant force driving the next wave of crypto innovation. In 2025, artificial intelligence has found a new frontier: blockchain. From infrastructure protocols to AI-native tokens, the market is seeing a surge in interest, investment, and returns for coins tied to the AI narrative. Token Metrics is at the forefront, helping users identify these explosive opportunities.

Why AI Coins Are Surging
The intersection of AI and crypto isn’t random. Three forces are converging to power this narrative:

  1. Mainstream AI Adoption – With tools like ChatGPT and Claude going mainstream, interest in AI has exploded.
  2. Decentralized Intelligence – Blockchain offers a secure, transparent way to distribute AI models and datasets.
  3. Speculative Momentum – The hype around AI is creating high-risk, high-reward token launches with strong upside potential.

Token Metrics’ AI Token Detection Strategy
Token Metrics uses its proprietary AI to identify early momentum in the market. Here's how it helped surface the best-performing AI tokens:

  • Volume spikes and unusual trading patterns
  • Token grades showing >80 Trader Score
  • Bold signals based on narrative tracking
  • Cross-chain analysis for upcoming projects

Ian Balina noted during the recent webinar that several AI coins have already delivered outsized returns — and this is just the beginning.

Examples of AI Tokens to Watch

  • Launch Coin – While not an AI token itself, its virality shows how fast narratives spread.
  • AI Infrastructure Projects – Platforms building decentralized compute for training and deploying models.
  • AI DeFi Hybrids – Tokens merging machine learning with trading, risk management, or yield optimization.

How to Ride the AI Wave
Using the Token Metrics platform, here’s how to position your portfolio:

  • Use Bold Signals: Sort by AI narrative to find breakout projects.
  • Set Alerts: Monitor new signal generation across top AI narratives.
  • Filter by Grade: Combine high Trader Grade with AI tag for high-conviction trades.

What This Means for Investors
The AI narrative is not a flash in the pan. It represents a paradigm shift in both technology and finance. Tokens that combine utility, vision, and timing will thrive. As always, early entry is key — and that’s where Token Metrics’ daily insights give users the edge.

Conclusion
AI tokens are fueling the next crypto bull run — and the smartest investors are already positioned. With real-time signals, narrative filters, and AI-powered grading, Token Metrics is your map through the chaos. The next big opportunity may already be on the Market Page.

Research

📈 Launch Coin’s Wild Ride: From 54 SOL to $4 Million

Token Metrics Team
4 min
MIN

The crypto world thrives on narratives, and few have captured attention in recent weeks like Launchcoin. Born from a blend of SocialFi innovation and meme-driven virality, Launchcoin has surged into the spotlight—offering both eye-popping returns and warnings of extreme volatility. Powered by Token Metrics’ AI insights, here’s a detailed look at where Launchcoin stands today.

🚀 AI Detected the Breakout Early

On April 20, 2025, Token Metrics’ proprietary AI model flipped bullish on Launchcoin. Since then, the token has rallied over 3x, proving the strength of the signal. Backed by machine learning models that track on-chain data, sentiment, and price action across multiple timeframes, the Trader Grade for Launchcoin is currently at a whopping 93.15%, designating it a Strong Buy in the short term.

However, after such an exponential surge, the platform’s analysts expect natural pullbacks as early buyers and whales begin to take profits. These corrections are healthy and expected in any meteoric price run—and should not be confused with a loss of fundamental strength.

🧠 Token Metrics Investor Grade: A Balanced Perspective

While short-term indicators are overwhelmingly bullish, the Investor Grade remains neutral, pointing to a more measured view on Launchcoin’s long-term potential. This signals that while there’s momentum, there are still structural risks—particularly due to its meme coin characteristics and reliance on hype cycles.

Still, a neutral long-term grade isn’t bearish. It suggests Launchcoin is currently stable at its elevated valuation, but investors should monitor developments carefully—especially as new features and ecosystem growth unfold.

📈 Launchcoin’s Wild Ride: From 54 SOL to $4 Million

The Launchcoin story has already minted millionaires. One trader reportedly turned an $8,191 investment (54 SOL) into $4 million after purchasing 14.62 million LAUNCHCOIN tokens when the market cap was below $500,000. This kind of exponential return is rare—even in crypto—and helped drive speculative interest across social media and trading forums.

Within just 22 days, Launchcoin’s market cap crossed $300 million, illustrating how quickly meme-based projects can capture market momentum, especially when they ride the wave of a compelling narrative.

🔄 Listings and Market Access

Launchcoin’s liquidity and accessibility have improved significantly. The token is now trading on major centralized exchanges:

  • Spot listings: Bitget, KuCoin, Gate.io, and MEXC
  • Futures: Recently launched on ByBit

These listings have broadened exposure, attracting a wider investor base and allowing leveraged traders to participate. Increased liquidity also reduces slippage, enabling larger capital inflows while minimizing execution risk.

🎭 From PASTERNAK to LAUNCHCOIN: The Rebranding

Initially launched as PASTERNAK, named after Believe’s founder Ben Pasternak, the project was rebranded to Launchcoin on May 2, 2025. The new name better reflects its core value proposition: empowering creators to launch tokens through a SocialFi model.

The model is simple but revolutionary—anyone can create a token by posting on social media with the “@launchcoin” tag. This lowers the barrier for entry into token creation and adds viral potential to every social interaction.

🧨 Risk and Volatility: A Speculative Bet

Despite its recent success, Launchcoin remains a highly speculative asset. Its meteoric rise is reminiscent of meme coin cycles seen with tokens like PEPE or DOGE. While Launchcoin offers a unique utility layer with its token-creation feature, its current valuation includes a significant hype premium.

Token Metrics encourages traders to stay nimble. With the AI trading signals, users can track grade changes in real-time, ensuring they’re not caught off guard by sharp reversals or cooldowns.

🧠 Final Thoughts

Launchcoin represents a blend of viral marketing, social token innovation, and AI-predicted trading opportunity. With strong short-term momentum, neutral long-term positioning, and significant ecosystem buzz, it’s a token to watch—but not without caution.

Whether you’re a trader riding the momentum or an investor assessing long-term viability, Token Metrics provides the data-driven edge to navigate Launchcoin’s volatility with confidence.

Research

Best Long-Term Crypto Picks for the 2025 Bull Market

Token Metrics Team
4 min
MIN

In a market full of noise, value investors are asking one critical question: what should I hold long-term?

Here are some of our top picks, based on fundamentals, traction, and longevity.

1. Grass – AI + Revenue

Grass stands out in the AI space. With over $15M in revenue from its browser extension and data resale model, it’s one of the few protocols generating real-world value. It’s a top AI blue chip we’re confident holding over multiple cycles.

2. Peaq – DePIN Infrastructure

Peaq positions itself as the Chainlink of decentralized physical infrastructure. While still under $1B FDV, it’s been consistent in development and narrative strength.

3. Sui – Consumer-Focused L1

Sui isn’t just another L1. Between Phantom wallet support, SuiPlay hardware, and growing dApp adoption, Sui has the elements to outpace older chains like Solana or Avalanche in user growth.

4. Parcl – Real Estate Derivatives

For exposure to real-world assets, Parcl offers a compelling play. Their UI is retail-friendly, listings are strong, and the market cap remains under $150M. This is one to watch as RWA adoption grows.

5. BitTensor – AI Infrastructure Layer

With a unique emission model and growing subnet usage, BitTensor remains the top AI infra token. Some even compare its long-term potential to early Bitcoin.

Bonus Mentions:

  • Uniswap / Aave / Compound – battle-tested DeFi with upcoming fee-sharing upgrades

  • Chainlink – oracle king still dominating infrastructure

  • Hyperliquid – sustainable revenue, EVM chain, and perps dominance

Final Words

The 2025 bull market will create noise—but also opportunity. These tokens aren’t just trendy—they’re infrastructure plays with real utility and upside. Allocate accordingly.

Research

SUI Price Analysis: Short-Term Momentum Builds Amid Long-Term Uncertainty

Token Metrics Team
4 min
MIN

SUI, a rising Layer 1 blockchain network, has been gaining traction recently—and Token Metrics' AI-powered tools were ahead of the curve in identifying its bullish momentum. On April 24th, the Token Metrics Trader Grade issued a bullish signal for SUI, and since then, the price has climbed nearly 22%, confirming the strength of the short-term trend.

But there’s more to this move than just price action. Token Metrics offers a unique perspective by analyzing both short-term and long-term signals through its proprietary Trader Grade and Investor Grade ratings. These grades offer a layered view of an asset's potential by using machine learning to evaluate over 80 on-chain, off-chain, and technical indicators.

Token Metrics AI: Bullish for Traders, Bearish for Investors

As of the latest data, SUI holds a “Strong Buy” rating on the Token Metrics Trader Grade, signaling powerful momentum for short-term traders. This suggests that swing traders and scalpers could benefit from the current trend, particularly if the price can decisively break through the immediate resistance at $4.25.

However, the Investor Grade tells a different story. While the short-term outlook is bullish, the long-term view remains cautious. The Investor Grade currently recommends a Sell, suggesting SUI may face challenges in sustaining gains over a multi-month time frame. This divergence highlights the importance of aligning your investment strategy with the appropriate time horizon.

TVL Growth Validates SUI’s Ecosystem Expansion

Beyond AI ratings, Token Metrics also factors in fundamental metrics—and one of the strongest tailwinds for SUI right now is its rapidly growing Total Value Locked (TVL). According to DeFi Llama, SUI’s TVL has surged to a new all-time high of $2.11 billion, cementing its position as the 8th largest blockchain by TVL.

This growth in TVL indicates that more capital is being deployed in the SUI ecosystem. It reflects increased user engagement with decentralized applications (dApps) on the network and signals rising confidence among DeFi participants. From a fundamental standpoint, this bodes well for SUI’s long-term utility—even if its price action hasn't yet caught up to the full extent of this growth.

Key Technical Levels: Breakout or Pullback?

From a technical analysis standpoint, SUI is now testing a major resistance at $4.25. A confirmed breakout above this level could send the asset surging toward new all-time highs, potentially igniting a new wave of momentum-driven buying.

However, if the price fails to breach this resistance zone, a pullback is likely. In that scenario, the $3.00 to $3.20 range should act as a solid support area. These levels will be critical for traders to monitor, and Token Metrics' real-time alerts can help users stay on top of such breakouts or reversals.

Trading Smarter with Token Metrics

Whether you're trading short-term breakouts or evaluating long-term positions, Token Metrics helps crypto investors make data-driven decisions. The platform’s dual-grade system—Trader Grade for momentum-based insights and Investor Grade for long-term trends—equips users with nuanced information to act with confidence.

Moreover, Token Metrics integrates this data directly into its AI Trading Agent and custom alerts system, ensuring you never miss an opportunity or warning signal. With instant access to heatmaps, technical breakdowns, and AI-based predictions, SUI traders can manage risk more efficiently and capitalize on emerging trends before the rest of the market catches on.

Final Thoughts

SUI is showing promising signs, especially with its network fundamentals improving rapidly and short-term momentum turning bullish. Still, the cautious long-term outlook suggests that traders should proceed with a balanced approach—watching both breakout levels and support zones, while leveraging tools like Token Metrics for real-time decision-making support.

As always, combining AI-driven insights with strong risk management is the key to navigating volatile markets like crypto. SUI is one to watch—and Token Metrics helps you stay one step ahead.

Announcements

AI Tokens and DeFi 2.0: Where Smart Capital is Flowing

Token Metrics Team
4 min
MIN

The crypto market is cyclical—not just in price, but in narrative. In recent months, attention has rotated from AI to DeFi, creating new opportunities for savvy investors. Let’s break down the trends.

AI Momentum Remains Strong

Projects like Vader AI, BitTensor, and Grass continue to dominate the conversation. Vader AI, part of the Virtua ecosystem, gained momentum from staking programs and Genesis Launchpad allocations. Grass, a data-layer AI protocol, claims $15M+ in revenue and recently flipped bullish on technical indicators.

BitTensor remains the leading infrastructure play in the AI space, drawing parallels to Bitcoin in its community enthusiasm and decentralization ethos. It has rebounded over 150% from its lows and is showing resilience in the current market cycle.

DeFi’s Comeback: Aerodrome and Beyond

Meanwhile, DeFi is showing signs of resurgence. Aerodrome, a DEX on the Base chain, is gaining traction through strong liquidity incentives and revenue-sharing mechanisms. Its user incentives echo the early days of Curve or Uniswap but on a chain optimized for scalability.

Virtua’s staking model is also driving a hybrid DeFi/AI strategy, blurring the lines between token utility, participation, and value capture.

Narrative Rotation: What It Means

Crypto narratives are rarely zero-sum. What we’re seeing now is a healthy diversification: AI remains dominant, but DeFi is catching a second wind. For investors, this means exploring tokens that sit at the intersection—offering strong tech, compelling incentives, and infrastructure integrations.

Closing Thoughts

Whether you’re riding the AI wave or positioning for the DeFi rebound, it’s clear that smart capital is flowing into ecosystems with tangible traction. Watch the flows, track the signals, and always be ready to pivot.

Track the Trends with Token Metrics

Token Metrics is your edge in navigating the ever-shifting landscape of crypto narratives. Our AI-powered research platform helps you spot bullish trends early, evaluate project fundamentals, and make data-driven investment decisions. Whether you're interested in AI tokens, DeFi protocols, or hybrid plays, Token Metrics provides real-time signals, technical grades, and curated indices to guide your next move.

Explore the platform at www.tokenmetrics.com and discover where smart capital is heading next.

Research

How Hyperliquid is Redefining Decentralized Perpetuals in 2025

Token Metrics Team
4 min
MIN

While most exchanges compete on liquidity or UI, Hyperliquid is rewriting the rules entirely.
This decentralized perps exchange has not only survived the bear market—it’s thriving. Backed by real revenue, a growing user base, and a unique listing model, Hyperliquid is emerging as the “Uniswap of Perps.”

The Reverse Auction Listing System

Hyperliquid introduces a novel reverse auction system for listing tokens. Bidders compete for tickers, with starting prices set at 2x the previous auction. Some tickers have fetched over $1 million, with the fees used for buybacks and burns—driving long-term value to the ecosystem.

This model isn’t just a gimmick. It introduces scarcity and gamification into token listings—something no other exchange is doing at this level.

Sustainable Revenue and Strong UX

Unlike many DEXs, Hyperliquid generates consistent trading fees, even in sideways markets. Its EVM-compatible L1 is coming soon, which could further cement it as the go-to perps exchange for serious traders.

Product-Market Fit in Action

In a space where hype often outpaces adoption, Hyperliquid offers both. It's not trying to be first—it's trying to be the best. The community listing process, upcoming L1, and high trading volumes all suggest it’s built for long-term relevance.

Smarter Trading with Token Metrics

To navigate emerging platforms like Hyperliquid, sophisticated analytics are key. Token Metrics provides a powerful suite of tools—AI-driven trading signals, token grades, on-chain data, and market indicators—to help traders make confident, data-backed decisions. Whether you're evaluating new token listings, monitoring market sentiment, or comparing DEX performance, Token Metrics equips you with everything you need to stay ahead of the curve.

Final Take

Hyperliquid is more than just another DEX—it’s a case study in how to build sustainable tokenomics and community alignment. If you’re looking for the next big infrastructure play in trading, don’t sleep on this one. And if you want to trade smarter, platforms like Token Metrics can be your secret weapon in decoding the market's next moves.

Announcements

Is Sui the Next Solana? A Deep Dive into L1 Competitors

Token Metrics Team
4 min
MIN

As the Layer 1 (L1) narrative continues to evolve, one blockchain has rapidly emerged as a serious contender to Solana’s throne: Sui. With growing infrastructure support and a strong focus on user experience, Sui is positioning itself as one of the most compelling L1 platforms in 2025.

Why the Sui Hype?

Sui has been gaining traction due to key integrations across the crypto ecosystem. Phantom wallet, known for its Solana roots, recently announced Sui support—putting Sui directly in the hands of thousands of users. Similarly, Axelar and LI.FI, major players in bridging and routing, have added Sui to their networks.

These integrations are not just symbolic; they’re strategic. By positioning itself as a supported chain across EVM-native infrastructure, Sui becomes more accessible and developer-friendly—critical factors for long-term adoption.

The SuiPlay Effect

Sui is also expanding beyond traditional DeFi and into consumer crypto. SuiPlay, a gaming-focused hardware device launched earlier this year, sold out in days. It marks a shift in L1 differentiation—no longer just about TPS (transactions per second), but about vertical-specific UX.

The gaming angle aligns with Sui’s broader push toward being the “consumer chain,” capturing not only dApp developers but also everyday users seeking smoother, gamified blockchain experiences.

Performance and Market Sentiment

Price action also favors Sui. While Solana bounced impressively from its post-FTX lows, Sui is now showing similar potential—with infrastructure support, developer traction, and consumer-facing products driving upward momentum.

The market seems to agree. Multiple indicators suggest Sui could outperform both Solana and Ethereum in the upcoming cycle. Its lower starting valuation also offers more upside, especially for value investors looking for the “next Solana.”

Final Thoughts

While it’s too early to crown Sui the definitive winner, all signs point to a strong L1 contender. Between integrations, product expansion, and market sentiment, Sui is carving a path worth watching—and potentially investing in.

Track Sui’s Momentum with Token Metrics

At Token Metrics, our AI-powered analytics tools help you track emerging L1 narratives like Sui in real time. From grade-based investment ratings and on-chain indicators to AI-generated bullish/bearish signals and technical scorecards, Token Metrics gives you the data you need to make smarter decisions. Explore Sui’s performance, compare it to other L1s, and stay ahead of the next market rotation—all in one dashboard.

Announcements

Launch Coin and the Rise of Internet Capital Markets

Token Metrics Team
3 min
MIN

In crypto, narratives evolve quickly—and in May 2025, a new one has captured the spotlight: Internet Capital Markets (ICM). At the center of this trend is a project called Launchcoin, which has surged over 20x in just days. But what is Launchcoin, and is this a sustainable movement or just another speculative wave?

What is Launchcoin?

Launchcoin is a protocol that lets users tokenize ideas directly from social platforms like X (formerly Twitter). Simply replying to a post with “@launchcoin + [your coin name]” can trigger the launch of a new token. The concept taps into the virality of meme coins but attempts to systematize it—making anyone with an idea a potential coin founder.

The recent buzz around Launchcoin follows a model that resembles earlier social-token projects like Clankerbot, but this one adds frictionless UX and a mobile-first approach. Some are already calling it “the TikTok of token launches.”

Is This Sustainable?

The token’s valuation surged from $0.01 to $0.24, with an FDV nearing $240M. Despite the meteoric rise, it’s worth noting that most of the current activity is speculative. At this stage, we view Launchcoin more as a trade than a long-term investment.

There are warning signs too: limited website traffic, sparse social engagement beyond one viral post, and no clear roadmap. While it’s grabbing headlines, it’s unclear how sticky this platform will be without deeper utility.

The Bigger Picture: Internet Capital Markets

Launchcoin is just the first ripple in a broader trend. ICM refers to the blending of social influence, capital formation, and blockchain—making it possible for ideas to become tradable assets in minutes. It reflects a growing appetite for spontaneous, viral, and community-led funding mechanisms.

While this space is still in its infancy, it hints at a future where capital formation isn't reserved for VCs and big-name founders but is democratized across the internet.

Final Thoughts

Launchcoin is exciting—but also risky. As with many meme-era projects, early gains may be followed by sharp corrections. Still, the rise of ICM is a signal worth watching. If future protocols can combine virality with compliance and utility, we could be witnessing the next evolution in how projects are launched—and who gets to launch them.

How Token Metrics Help You Track Emerging Narratives Like ICM

As crypto narratives evolve rapidly, tools like Token Metrics help investors stay ahead of the curve. Our platform uses AI-driven data, technical signals, and project ratings to detect early momentum in tokens like Launchcoin. With features like Bullish/Bearish Signals, Trader and Investor Grades, and curated narrative-based indices, Token Metrics enable users to evaluate trends like Internet Capital Markets with speed and precision. Whether you’re trading the hype or tracking long-term shifts, Token Metrics give you the insights needed to navigate the noise.

Crypto Basics

Ripple XRP Price Prediction: What’s Next for XRP After Its Bullish Breakout?

Token Metrics Team
3 min
MIN

Ripple (XRP) has been back in the spotlight after recent market moves—and investors are wondering: Will XRP keep going up? With a 15% surge since April 24 and growing optimism around XRP Futures ETFs, the sentiment is clearly shifting. Here's a breakdown of the latest XRP price prediction using data-driven insights from Token Metrics’ AI indicators and technical charts.

🚀 XRP Turned Bullish Before the ETF News

On April 24, Token Metrics’ proprietary AI trading indicator flashed a bullish signal on XRP—just before the approval of the ProShares XRP Futures ETF. This early signal positioned traders ahead of the 15% rally that followed.

Such predictive accuracy boosts trader confidence, especially during key market events. It reinforces the value of AI-driven trading signals in volatile crypto environments.

📊 TM Trader Grade: 88.84% – Bulls Are in Control

As of now, Token Metrics’ Trader Grade for XRP stands at a high 88.84%, signaling a strong buy. This grade reflects short-term momentum and trader sentiment, confirming that bulls currently dominate XRP’s price action.

Meanwhile, the Investor Grade—which tracks long-term fundamentals and trends—remains neutral. This suggests that while XRP is hot in the short term, long-term investors should remain cautiously optimistic.

📉 XRP Technical Analysis: Range-Bound but Primed for Breakout?

From a technical standpoint, XRP has traded sideways since December, forming a wide consolidation pattern. Key levels to watch:

  • Support: ~$2
  • Resistance: ~$2.86

This range has held for months, but with renewed interest and bullish sentiment, a breakout above $2.86 could trigger a much larger move. Traders should watch volume and ETF-related news for confirmation.

🧠 What’s Driving XRP’s Momentum?

  • XRP Futures ETF Approval: A major catalyst that validates institutional interest in Ripple.
  • AI-Powered Bullish Signal: Token Metrics’ indicators detected momentum before the market reacted.
  • Strong Buy Rating: A near-89% trader score indicates high conviction.

🔮 Ripple XRP Price Prediction – 2025 Outlook

With institutional products like ETFs emerging and short-term momentum picking up, XRP may soon test and potentially break above its current resistance. If bullish momentum continues:

  • Short-term price prediction: Retest of $2.86 and potential breakout toward $3+
  • Long-term outlook: Sideways consolidation remains until fundamentals or macro trends shift

✅ Conclusion: XRP Is Heating Up—But Caution Is Warranted

While XRP is showing bullish short-term potential, the long-term picture is still neutral. Traders should watch for confirmation above resistance and keep an eye on volume and ETF developments.

For more AI-powered crypto price predictions, trading signals, and investment insights, explore Token Metrics.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Featured Posts

Crypto Basics Blog

Research Blogs

Announcement Blogs

Unlock the Secrets of Cryptocurrency

Sign Up for the Newsletter for the Exclusive Updates