Text Link
Text Link
Text Link
Text Link
Text Link
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Stop Guessing, Start Trading: The Token Metrics API Advantage

Announcements

Big news: We’re cranking up the heat on AI-driven crypto analytics with the launch of the Token Metrics API and our official SDK (Software Development Kit). This isn’t just an upgrade – it's a quantum leap, giving traders, hedge funds, developers, and institutions direct access to cutting-edge market intelligence, trading signals, and predictive analytics.

Crypto markets move fast, and having real-time, AI-powered insights can be the difference between catching the next big trend or getting left behind. Until now, traders and quants have been wrestling with scattered data, delayed reporting, and a lack of truly predictive analytics. Not anymore.

The Token Metrics API delivers 32+ high-performance endpoints packed with powerful AI-driven insights right into your lap, including:

  • Trading Signals: AI-driven buy/sell recommendations based on real-time market conditions.
  • Investor & Trader Grades: Our proprietary risk-adjusted scoring for assessing crypto assets.
  • Price Predictions: Machine learning-powered forecasts for multiple time frames.
  • Sentiment Analysis: Aggregated insights from social media, news, and market data.
  • Market Indicators: Advanced metrics, including correlation analysis, volatility trends, and macro-level market insights.

Getting started with the Token Metrics API is simple:

  1. Sign up at www.tokenmetrics.com/api
  2. Generate an API key and explore sample requests.
  3. Choose a tier–start with 50 free API calls/month, or stake TMAI tokens for premium access.
  4. Optionally–download the SDK, install it for your preferred programming language, and follow the provided setup guide.

At Token Metrics, we believe data should be decentralized, predictive, and actionable. 

The Token Metrics API & SDK bring next-gen AI-powered crypto intelligence to anyone looking to trade smarter, build better, and stay ahead of the curve. With our official SDK, developers can plug these insights into their own trading bots, dashboards, and research tools – no need to reinvent the wheel.

Research

What Are The Risks of AI Controlling DAOs? Critical Risks Every Crypto Investor Must Know

Talha Ahmad
5 min
MIN

The convergence of artificial intelligence and decentralized autonomous organizations (DAOs) marks a groundbreaking moment in blockchain technology. This fusion promises to revolutionize governance by automating decision making and enhancing efficiency through AI-driven systems. However, while integrating AI technologies into DAOs offers exciting opportunities, it also introduces a complex array of risks that could fundamentally undermine the democratic ideals upon which decentralized autonomous organizations were founded. Understanding what are the risks of AI controlling DAOs is essential for anyone involved in decentralized finance, governance, or the broader crypto ecosystem.

Introduction to AI-Controlled DAOs: Definition and Overview

AI-Controlled DAOs are decentralized autonomous organizations that leverage artificial intelligence to manage and govern their operations with minimal human intervention. By integrating advanced AI models and algorithms into the core of DAO governance, these entities can autonomously execute decision making processes, optimize asset management, and adapt to changing environments in real time. Artificial intelligence AI enables DAOs to analyze complex data sets, identify patterns, and make informed decisions without relying on centralized authorities or manual oversight. This fusion of AI and DAOs is reshaping the landscape of decentralized governance, offering the potential for more efficient, scalable, and self-sustaining organizations. As AI development continues to advance, the role of AI models in decentralized autonomous organizations is set to expand, fundamentally transforming how decisions are made and assets are managed across the crypto ecosystem.

The Rise of AI-Driven DAOs: A Double-Edged Innovation

AI-driven DAOs represent a new paradigm in the DAO space, where artificial intelligence tools and advanced AI models are entrusted with governance responsibilities traditionally held by human token holders. These AI agents can propose changes, vote on governance issues, and even execute decisions autonomously via smart contracts. This shift from human-centric governance to algorithm-driven decision making promises increased scalability and productivity, potentially unlocking new revenue streams and optimizing asset management.

However, this evolution also introduces unique challenges. The autonomous nature of AI acting within DAOs raises critical questions about ethical concerns, security vulnerabilities, and the balance of power between AI systems and human intervention. Unlike traditional DAOs, where risks often stem from voter apathy or central authority influence, AI DAOs face the threat of model misalignment—where AI algorithms optimize for objectives that deviate from human intentions. This misalignment is not merely theoretical; it is a practical issue that can disrupt consensus mechanisms and jeopardize the strategic direction of decentralized autonomous organizations.

In essence, while AI technologies can propel DAOs into a new era of efficiency and data-driven insights, they also potentially lead to scenarios where AI systems act in ways that conflict with the foundational principles of decentralization and democratic governance, potentially leading to significant risks or harm if not properly managed.

But what if AI ownership within DAOs shifts the balance of power entirely, allowing autonomous agents to make decisions without meaningful human oversight? But what happens when collective intelligence is governed by algorithms rather than people, and how might this reshape the future of decentralized organizations?

The Benefits of AI-Controlled DAOs: Promise and Potential

The integration of AI and DAOs brings a host of compelling benefits that are driving innovation in decentralized governance. AI-Controlled DAOs can automate decision making processes, enabling faster and more consistent responses to governance challenges. By harnessing the analytical power of AI daos, these organizations can process vast amounts of data, uncover actionable insights, and make data-driven decisions that enhance overall performance. This automation not only streamlines operations but also opens up new revenue streams and business models, as AI-driven DAOs can identify and capitalize on emerging opportunities more efficiently than traditional structures. Improved asset management is another key advantage, with AI systems optimizing resource allocation and risk management. Ultimately, the synergy between AI and DAOs empowers organizations to become more resilient, adaptive, and innovative, paving the way for a new era of decentralized, autonomous governance.

Critical Risk Categories in AI-Controlled DAOs

1. Model Misalignment and Goal Deviation

At the heart of AI risks in DAO governance lies the problem of model misalignment. AI systems, especially those powered by machine learning models and large language models, operate by optimizing specific metrics defined during training. Training AI models in isolated environments or silos can increase the risk of misalignment and loss of control, as these models may not be exposed to the diverse perspectives and values necessary for safe and ethical outcomes. However, these metrics might not capture the full spectrum of human values or community goals. As a result, an AI system could pursue strategies that technically fulfill its programmed objectives but harm the DAO’s long-term interests.

For example, an AI agent managing financial assets within a decentralized autonomous organization might prioritize maximizing short-term yield without considering the increased exposure to security risks or market volatility. The Freysa contest highlighted how malicious actors exploited an AI agent’s misunderstanding of its core function, tricking it into transferring $47,000. This incident underscores how AI models, if not properly aligned and monitored, can be manipulated or confused, leading to catastrophic outcomes.

2. Algorithmic Bias and Democratic Erosion

AI systems inherit biases from their training data and design, which can erode the democratic ethos of DAO governance. While DAO governance AI tools are designed to enhance proposal management and moderation, they can also inadvertently reinforce biases if not properly monitored. Biases embedded in AI algorithms may result in unfair decision making, favoring certain proposals, contributors, or viewpoints disproportionately. These biases manifest in several ways:

  • Selection Bias: AI models might consistently prioritize certain types of proposals or token holders, marginalizing others.
  • Historical Bias: Training data reflecting past inequalities can perpetuate systemic discrimination within DAO governance.
  • Confirmation Bias: AI-driven decision-making could reinforce existing organizational tendencies, stifling innovation and diverse perspectives.

Such biases threaten to undermine the promise of decentralized networks by creating invisible barriers to participation, effectively centralizing power despite the decentralized structure.

3. Security Vulnerabilities and Attack Vectors

Integrating AI into DAOs introduces new security risks that extend beyond traditional smart contract vulnerabilities. AI systems depend heavily on training data and algorithms, both of which can be targeted by malicious actors seeking to manipulate governance outcomes.

Key security concerns include:

  • Unauthorized Access and Model Tampering: Without robust access controls, attackers can alter AI model outputs, compromising trust in decision making. Improper or overly broad ai permission settings can allow attackers to exploit AI authority within DAOs, making it essential to enforce strict permission controls to limit unauthorized actions.
  • Data Poisoning: Corrupting training data can mislead AI systems, causing them to make flawed or harmful decisions.
  • Adversarial Attacks: Malicious inputs crafted specifically to deceive AI models can lead to unpredictable and damaging behavior.
  • Prompt Injection: Attackers can exploit AI assistants or natural language processing capabilities to inject deceptive instructions, as seen in the Freysa incident.
  • Model Extraction: Competitors or attackers may reverse-engineer proprietary AI algorithms, exposing intellectual property and governance strategies.

These vulnerabilities underscore the necessity for decentralized autonomous organizations to implement robust security protocols that safeguard both AI systems and the underlying smart contracts.

4. Centralization Through Technical Complexity

One of the most subtle yet profound risks of AI in DAOs is the potential for centralization of power among a small group of technical experts or "AI wizards." The complexity of AI development and maintenance creates a knowledge barrier that limits meaningful participation to those with specialized skills. This technical gatekeeping can result in governance control shifting from the broader community to a few individuals who understand and can manipulate AI systems.

Such centralization contradicts the decentralized ethos of DAOs and risks creating new oligarchies defined by AI expertise rather than token ownership or community contribution. Over time, this dynamic could erode trust and reduce the legitimacy of AI-driven DAO governance.

5. Regulatory and Compliance Nightmares

AI-controlled DAOs operate in a regulatory gray area, facing challenges that traditional organizations do not. The autonomous nature of AI acting within decentralized networks complicates accountability and legal responsibility. Key regulatory concerns include:

  • Accountability: When AI systems make autonomous decisions, determining liability for errors or malicious actions becomes complex.
  • Cross-Jurisdictional Compliance: DAOs operate globally, but AI governance regulations vary widely by jurisdiction, creating compliance challenges.
  • Evolving Standards: Rapid advances in AI development and shifting regulatory landscapes mean DAOs risk falling out of compliance as standards change.

These factors introduce legal uncertainties that could expose AI DAOs to sanctions, fines, or operational restrictions, complicating their long-term viability.

Real-World Manifestations of AI DAO Risks

The risks associated with AI-driven DAOs are not merely theoretical. In 2025 alone, smart contract security flaws led to over $90 million in losses due to hacks and exploits within DAO structures. When AI systems are layered onto these vulnerabilities, the potential for cascading failures grows exponentially.

Incidents have already demonstrated how attackers exploit governance mechanisms, manipulating voting and decision-making processes. AI’s speed and efficiency can be weaponized to identify arbitrage opportunities that disadvantage the DAO itself. Moreover, AI systems processing community input may be vulnerable to sophisticated social engineering and disinformation campaigns, further destabilizing governance. The use of ai agent comments in forum discussions and governance decisions can amplify manipulation by allowing AI to influence outcomes directly. There is also a risk that AI-powered moderation tools could inadvertently generate or spread hate speech, making it essential to implement safeguards to prevent toxic content. Additionally, the proliferation of ai generated content, such as misinformation or abusive material, poses dangers by misleading users and undermining the stability of governance.

These real-world examples highlight the urgent need for comprehensive risk management strategies in AI DAO integration.

The Data Quality Crisis

A frequently overlooked risk in AI-controlled DAOs is the quality and integrity of data used to train and operate AI models. Since AI systems rely heavily on training data, any flaws or manipulation in this data can compromise the entire governance process.

In decentralized autonomous organizations, this risk manifests through:

  • Incomplete Information: DAOs often lack extensive historical data, limiting the reliability of AI-driven predictions and decisions.
  • Gaming Risks: Members may intentionally manipulate input data to influence AI decision making for personal gain.
  • External Dependencies: Reliance on third-party data sources introduces vulnerabilities to external tampering or failures.

Ensuring the accuracy, completeness, and security of training data is therefore paramount to maintaining AI safety and trustworthy DAO governance.

Asset Management in AI-Controlled DAOs: New Frontiers, New Risks

Asset management is at the heart of many AI-Controlled DAOs, as these organizations are tasked with overseeing and optimizing a wide range of financial assets and digital resources. By deploying advanced AI models, including machine learning models and natural language processing tools, AI-Controlled DAOs can analyze market data, forecast trends, and make strategic investment decisions with unprecedented speed and accuracy. However, this reliance on AI systems introduces new security vulnerabilities and risks. Malicious actors may attempt to exploit weaknesses in AI algorithms, manipulate training data, or launch sophisticated attacks targeting the DAO’s asset management protocols. To address these challenges, AI-Controlled DAOs must implement robust security protocols, ensure the integrity and quality of their training data, and establish transparent governance structures that can respond to emerging threats. By proactively managing these risks, AI-Controlled DAOs can unlock new opportunities for growth while safeguarding their financial assets and maintaining trust within their communities.

Navigating the Risks: Lessons from Token Metrics

Despite these challenges, responsible integration of artificial intelligence in DAO governance is achievable. Platforms like Token Metrics exemplify how AI tools can enhance decision making without sacrificing transparency or human oversight.

Token Metrics is an AI-powered crypto analytics platform that leverages advanced AI models and predictive analytics to identify promising tokens and provide real-time buy and sell signals. By anticipating future trends through AI-driven predictions, Token Metrics helps DAOs and investors improve investment strategies and resource management. Some of the advanced AI models used by Token Metrics are based on large language model technology, which underpins content analysis and decision support for more effective DAO operations. Their approach balances AI-driven insights with human judgment, embodying best practices for AI and DAOs:

  • Transparency: The platform openly explains its AI recommendations, mitigating the black box problem common in AI systems.
  • Human-AI Collaboration: Rather than replacing humans, Token Metrics augments human analysis with AI-generated data-driven insights.
  • Risk Management: Multiple data sources and validation mechanisms reduce single points of failure and improve reliability.
  • Continuous Learning: Their AI models are regularly updated based on market feedback and user input to maintain alignment with investor goals.

With a track record of 8,000% returns from AI-selected crypto baskets, Token Metrics demonstrates that artificial intelligence tools, when implemented with robust safeguards and human oversight, can unlock new revenue streams and improve DAO productivity without compromising security or ethical standards.

AI Model Ownership: Legal and Technical Implications

As AI models become central to the operation of AI-Controlled DAOs, questions around ownership and intellectual property take on new significance. Determining who owns the rights to an AI model—whether it’s the developers, the DAO itself, or the broader community—can have far-reaching legal and technical implications. Issues of liability and accountability also arise, especially when AI-driven decisions lead to unintended consequences or disputes. To navigate these complexities, AI-Controlled DAOs need to establish clear policies regarding AI model ownership, including licensing agreements and governance frameworks that protect the interests of all stakeholders. Addressing these challenges is essential for ensuring transparency, safeguarding intellectual property, and fostering innovation in the rapidly evolving landscape of AI and decentralized autonomous organizations.

Mitigation Strategies and Best Practices

Although AI-controlled DAOs face significant risks, these challenges are not insurmountable. Proactive strategies can help organizations safely integrate AI technologies into their governance structures. It is especially important to establish clear rules and safeguards for scenarios where AI owns assets or treasuries within DAOs, as this fundamentally changes traditional notions of ownership and financial authority.

  • Implement robust access controls and multi-signature wallets to prevent unauthorized actions by AI agents.
  • Regularly audit smart contracts and AI code to identify and patch vulnerabilities before they can be exploited.
  • Use platforms like Ocean Protocol to enable decentralized data sharing and AI integration, which can enhance security, empower data owners, and automate governance processes.
  • Foster collaboration between DAOs, such as the Amazon rainforest DAO, where AI-powered metagovernance and swarm intelligence facilitate joint decision-making and address environmental challenges like deforestation and climate change.
  • Consider the environmental impact of AI deployment, particularly the significant energy consumption of data centers that power large-scale AI systems, and prioritize sustainable infrastructure to minimize harm.

1. Hybrid Governance Models

Combining AI automation with human oversight is critical. DAOs should reserve high-impact decisions for human token holders or expert councils, ensuring AI-driven decisions are subject to review and intervention when necessary. This hybrid approach preserves the benefits of AI while maintaining democratic participation.

2. Continuous Alignment Monitoring

Alignment between AI algorithms and community values must be an ongoing process. Regular audits and testing of AI decision-making against expected outcomes help detect and correct goal deviations early. Treating alignment as a continuous operational expense is essential for AI safety.

3. Distributed Technical Expertise

Investing in community education and skill-building democratizes AI stewardship. By broadening technical expertise among members, DAOs can prevent governance capture by a small group of AI experts and foster a more decentralized technical ecosystem.

4. Robust Security Frameworks

Implementing comprehensive security protocols is vital. Measures include:

  • Multi-signature requirements for AI-initiated transactions
  • Anomaly detection systems to flag unusual AI behavior
  • Regular security audits of both AI systems and smart contracts
  • Incident response plans tailored to AI-specific threats

These steps help safeguard DAO governance against malicious AI and external attacks.

The Path Forward: Balancing Innovation and Risk

The future of AI-controlled DAOs hinges on striking the right balance between leveraging AI’s capabilities and preserving meaningful human intervention. As AI development and decentralized networks continue to evolve, more sophisticated governance models will emerge that integrate AI-driven decision making with community oversight.

Organizations exploring AI in DAO governance should:

  1. Start with limited AI roles in non-critical functions to minimize risk.
  2. Maintain transparency about AI system operations to build trust.
  3. Preserve mechanisms for human override to ensure control remains with the community.
  4. Conduct regular audits to monitor AI performance and compliance.
  5. Educate members about AI risks and benefits to foster informed participation.

By adopting these practices, DAOs can harness the advantages of artificial intelligence while mitigating its inherent risks.

Conclusion: Preparing for an AI-Governed Future

Integrating artificial intelligence into decentralized autonomous organizations offers transformative potential but also brings significant challenges. While AI can enhance efficiency, reduce certain human biases, and enable more responsive governance, it simultaneously introduces new security risks, ethical concerns, and governance complexities that could threaten the democratic foundations of DAOs.

Success in this evolving landscape depends on thoughtful AI development, robust risk management, and transparent human-AI collaboration. Platforms like Token Metrics illustrate how AI products can deliver powerful, data-driven insights and automation while maintaining accountability and community trust.

As we stand at this technological crossroads, understanding what are the risks of AI controlling DAOs is essential. By acknowledging these risks and implementing appropriate safeguards, the crypto community can work towards a future where AI enhances rather than replaces human agency in decentralized governance—preserving the revolutionary promise of decentralized autonomous organizations.

For investors and participants in the crypto ecosystem, staying informed about these emerging technologies and choosing platforms with proven responsible AI implementation will be crucial for navigating the complex and rapidly evolving DAO space.

Research

Can AI and Blockchain Be Combined for IoT? The Revolutionary Convergence Transforming Industries in 2025

Talha Ahmad
5 min
MIN

In the rapidly evolving digital landscape of 2025, a groundbreaking convergence is taking place among three transformative technologies: Artificial Intelligence (AI), Blockchain, and the Internet of Things (IoT). This powerful combination is not merely a theoretical possibility—it is actively reshaping industries by redefining how connected devices communicate, how data is managed, and how decisions are made autonomously. Understanding can AI and blockchain be combined for IoT applications is essential for businesses, investors, and technologists aiming to harness the full potential of this technological revolution.

At the forefront, IoT devices generate vast amounts of data from sensors embedded in everything from smart cities to healthcare systems. AI algorithms analyze this real-time data to derive actionable insights, while blockchain technology ensures data integrity and security through decentralized, tamper-proof transaction records. Together, these technologies enable smarter, more secure, and autonomous IoT ecosystems that are transforming how industries operate.

The Foundation: Understanding the Technological Trinity

To appreciate the synergy between AI, blockchain, and IoT, it is important to understand each technology’s role.

Artificial Intelligence refers to computer systems capable of human-like cognition, including reasoning, learning, and decision-making. In 2025, AI systems leverage advanced machine learning and neural networks to process massive datasets generated by IoT sensors in real time. These AI models empower IoT devices to evolve from simple data collectors into autonomous systems capable of predictive maintenance, anomaly detection, and optimized resource allocation.

Blockchain technology acts as a decentralized ledger that records digital transactions securely and transparently without intermediaries. By storing data across distributed blockchain networks, it enhances security features and guarantees data provenance and integrity. Blockchain protocols enable smart contracts—self-executing agreements that automate and secure interactions between IoT devices, ensuring trustworthy digital transactions.

Internet of Things (IoT) encompasses the vast network of connected devices embedded with sensors and software that collect and exchange data. IoT systems span smart grids, smart cities, healthcare devices, and industrial automation. With projections estimating around 30 billion IoT devices worldwide by 2030, the volume of data generated demands robust AI and blockchain integration to optimize data management and security.

The Market Reality: Explosive Growth and Convergence

The convergence of AI, blockchain, and IoT is no longer a futuristic concept but a tangible market phenomenon with significant economic impact. The combined market capitalization of these technologies exceeded $1.362 trillion in 2024 and is expected to grow exponentially as their integration deepens.

The IoT market alone, valued at $300 billion in 2021, is projected to surpass $650 billion by 2026, with estimates reaching $3.3 trillion by 2030. This growth is fueled by the increasing demand for secure, intelligent IoT networks that can handle the massive data flows generated by connected devices.

This convergence addresses practical challenges faced by traditional cloud-based data processing, such as latency, high costs, and vulnerability to cyber threats. Integrating AI and blockchain within IoT ecosystems optimizes data analysis and enhances security protocols, making it an indispensable strategy for modern enterprises.

How the Integration Works: The Technical Symphony

AI as the Intelligence Layer

AI forms the cognitive backbone of IoT systems by transforming raw data collected from IoT sensors into meaningful insights. Through machine learning and neural networks, AI analyzes data generated by connected devices to detect anomalies, predict equipment failures, and optimize energy management in real time.

For example, AI algorithms embedded in smart grids can forecast electricity demand and adjust distribution accordingly, reducing waste and improving sustainability. Similarly, in manufacturing, AI-driven predictive maintenance minimizes downtime by identifying potential faults before they escalate.

By integrating AI processes with IoT data flows, enterprises can automate decision-making and enhance operational efficiency, turning IoT devices into autonomous systems capable of adapting dynamically to changing environments.

Blockchain as the Trust Infrastructure

While AI provides intelligence, blockchain technology offers the trust and security layer vital for IoT networks. Blockchain enhances security by decentralizing data storage and transaction records, making it resistant to tampering and cyber breaches.

Key applications of blockchain in IoT include:

  • Device Authentication: Each IoT device receives a unique digital identity secured cryptographically on the blockchain, ensuring only authorized devices participate in the network. This prevents unauthorized access and exploits of vulnerabilities.
  • Data Provenance and Integrity: Blockchain records the origin and history of data generated by IoT sensors, guaranteeing its authenticity. For instance, blockchain can verify that temperature readings in a cold chain logistics system were not altered during transit.
  • Smart Contracts for Automated Transactions: Blockchain-enabled smart contracts facilitate secure, automated transactions between devices without intermediaries. This capability supports autonomous financial transactions such as toll payments by connected vehicles or peer-to-peer energy trading in smart grids.

By integrating blockchain systems with IoT, enterprises can achieve enhanced security features and maintain data privacy while enabling transparent and tamper-proof data management.

The Convergence in Action

The fusion of AI, blockchain, and IoT technologies creates a new digital operating system where blockchain serves as the secure trust layer, IoT devices provide continuous streams of real-time data, and AI models analyze and act on this data autonomously. This convergence is revolutionizing industries by enabling decentralized AI models to operate securely across blockchain networks, optimizing IoT ecosystems with enhanced data security and operational intelligence.

Real-World Applications Transforming Industries

Smart Supply Chains and Logistics

Supply chains are becoming increasingly complex, requiring flexible, transparent, and adaptive solutions. AI algorithms analyze IoT data from sensors monitoring shipment conditions and locations, predicting delays and optimizing delivery routes. Blockchain technology ensures the authenticity and traceability of goods by securely recording transaction records and device authentication events.

This integration improves inventory management by providing end-to-end visibility, reducing fraud, and preventing data breaches, ultimately enhancing customer trust and operational efficiency.

Autonomous Financial Transactions

The combination of AI and blockchain enables connected devices like autonomous vehicles and drones to conduct financial transactions independently. Smart contracts automate payments for services such as EV charging, tolls, or retail purchases, reducing friction and improving user experience.

For example, an electric vehicle can automatically pay for charging at a smart grid station using blockchain transactions secured by AI-enhanced security protocols. This autonomous system streamlines commerce within the IoT ecosystem.

Energy Management and Sustainability

In smart grids, AI optimizes energy distribution by analyzing real-time data from IoT sensors, forecasting demand, and adjusting supply dynamically. Blockchain facilitates peer-to-peer energy trading between participants, ensuring secure and transparent transactions.

This integration supports sustainability goals by optimizing resource allocation, reducing energy waste, and enabling decentralized energy markets that empower consumers and producers alike.

Healthcare and Medical Devices

IoT medical devices continuously collect sensitive patient data, which AI systems analyze to detect early signs of diseases and personalize treatment plans. Blockchain technology ensures the secure management and privacy of patient data by decentralizing storage and controlling access through smart contracts.

This convergence enhances healthcare system efficiency, enabling seamless and secure sharing of medical records across providers while protecting against data breaches.

The Role of Advanced Analytics: Token Metrics Leading the Way

Navigating the complex intersection of AI, blockchain, and IoT requires sophisticated analytics platforms. Token Metrics, a premier crypto trading and analytics platform, leverages AI technologies to help investors identify promising AI-blockchain-IoT projects early.

Token Metrics integrates AI-driven data analytics, sentiment analysis, and real-time market data across thousands of tokens. Its AI models assign Trader Grades and Investor Grades to tokens, guiding users in making informed decisions within this rapidly evolving market.

By consolidating research, portfolio management, and trading tools, Token Metrics empowers investors to capitalize on the AI blockchain’s role in transforming IoT ecosystems and digital transactions.

Current Challenges and Solutions

Scalability and Data Management

The enormous volume of data generated by IoT devices demands scalable AI processing and blockchain storage solutions. Edge computing addresses latency and bandwidth constraints by processing data closer to the source. Layer-2 blockchain protocols improve transaction throughput, making blockchain operations more efficient and cost-effective.

Security and Privacy

While blockchain enhances security, integrating AI models and IoT networks introduces new vulnerabilities. Enterprises must implement robust security features, including advanced encryption and privacy-preserving AI techniques, to protect sensitive data and comply with data privacy regulations.

Interoperability

Diverse blockchain networks, AI frameworks, and IoT protocols present challenges for seamless integration. Standardized interfaces and cross-platform compatibility solutions are essential to enable smooth data flows and cohesive system operation.

Future Outlook: The 2030 Vision

Looking ahead, the integration of AI, blockchain, and IoT is poised to create an adaptable, interconnected digital ecosystem. By 2030, AI-enhanced blockchain networks combined with 5G connectivity will enable unprecedented real-time data analysis and autonomous decision-making across industries.

Digital wallets, empowered by blockchain protocols, will expand beyond cryptocurrencies to support seamless device authentication and smart contract interactions. The in-car payment market alone is expected to reach $530 billion, with vehicles conducting secure, autonomous transactions via blockchain-linked SIM cards.

This complete ecosystem integration will power smart cities, smart grids, healthcare systems, and autonomous systems, unlocking new efficiencies and innovations.

Strategic Implications for Businesses

In 2025, companies that fail to embrace the convergence of AI, blockchain, and IoT risk falling behind. To remain competitive, organizations must:

  • Develop integrated technology infrastructures that unify AI systems, blockchain networks, and IoT devices.
  • Implement data strategies that leverage AI for data analysis while using blockchain to ensure data integrity and secure management.
  • Establish comprehensive security protocols addressing the unique challenges of interconnected AI-blockchain-IoT environments.
  • Invest in talent capable of navigating the intersection of these technologies rather than isolated specializations.

Conclusion: The Inevitable Future

The question is no longer can AI and blockchain be combined for IoT—the answer is a resounding yes. The real challenge lies in how swiftly organizations can adapt to this convergence that is fundamentally transforming digital ecosystems.

By harnessing AI intelligence, blockchain trust, and IoT connectivity, businesses can create autonomous systems that think, transact, and optimize in real time while maintaining the highest standards of data privacy and security. Platforms like Token Metrics provide the tools to navigate this revolution, identifying opportunities and mitigating risks in the evolving digital economy.

The convergence of AI, blockchain, and IoT is here, the market is responding, and transformation is accelerating. The future belongs to those ready to embrace this revolutionary synergy and lead the next wave of innovation. Are you ready to be part of this transformative journey?

Research

What Are Real-World Assets in Crypto? A Complete Guide

Talha Ahmad
5 min
MIN

The cryptocurrency landscape is undergoing a revolutionary transformation as traditional finance converges with blockchain technology. At the forefront of this evolution are Real-World Assets (RWAs) – a groundbreaking innovation bridging the gap between physical assets and digital finance. As we navigate through 2025, understanding what are real world assets in crypto has become essential for investors, institutions, and anyone looking to capitalize on this trillion-dollar opportunity.

Understanding Real-World Assets (RWAs)

Real-World Assets in crypto refer to digital tokens that represent ownership or economic rights to tangible, physical assets or traditional financial instruments. Unlike conventional cryptocurrencies, which derive their value primarily from market speculation or utility within a digital ecosystem, RWA tokens are backed by concrete, verifiable assets existing in the real world. This intrinsic backing provides a level of stability and investor confidence that pure digital assets may lack.

In essence, RWAs are crypto tokens that represent physical assets such as bonds, real estate properties, commodities, machinery, and more. They serve as a bridge bringing traditional financial assets into the realm of decentralized finance (DeFi). Through the tokenization process, these often illiquid assets are transformed into tradeable digital tokens, enabling features like fractional ownership and global access. This innovation opens new doors for asset management, making high-value and previously inaccessible assets available to a broader range of investors.

Types of Real-World Assets Being Tokenized

The scope of real world asset tokenization is vast and continues to expand across various asset classes:

Financial Instruments

Government bonds, treasury bills, and corporate debt are increasingly being tokenized, merging traditional fixed-income investing with blockchain technology. For example, BlackRock’s BUIDL fund, launched in March 2024, commands a dominant 44% market share in tokenized treasuries. These financial assets offer stable yields and introduce a new dimension of financial innovation by making traditional assets accessible via digital tokens.

Real Estate

The real estate industry is one of the most active sectors embracing tokenization. Platforms like Propy and RealT facilitate tokenized real estate investment, allowing investors to acquire fractional ownership in commercial and residential properties. This approach democratizes access to valuable assets that were traditionally out of reach for retail investors, enabling them to benefit from rental income and property appreciation through onchain finance.

Commodities

Commodity-backed tokens, particularly those linked to precious metals like gold, constitute a significant portion of the RWA market. Tokens such as Tether Gold (XAUT) and PAX Gold (PAXG) represent approximately 84% of this sector, which has seen growth of 67.8% since 2024, reaching a market capitalization of $1.9 billion. These tokens provide a secure and liquid means of investing in tangible assets without the need for physical storage.

Art and Collectibles

High-value artworks, vintage wines, and collectibles are being tokenized to increase accessibility and liquidity. Blockchain verification ensures authenticity and provenance, allowing investors to own fractions of unique and intellectual property assets that were once difficult to trade.

Private Credit

Private credit protocols are emerging as a bridge between traditional lending and DeFi, providing loans to real-world businesses, especially in emerging markets. This sector leverages crypto capital to support business growth, offering new investment opportunities and enhancing financial inclusion.

The Technology Behind RWA Tokenization

The process of asset tokenization involves multiple critical steps to ensure security, compliance, and seamless integration with the digital ecosystem:

Asset Selection and Verification

Before tokenization, asset owners and asset issuers conduct thorough evaluations of the underlying asset. This includes legal due diligence to comply with local laws and regulatory compliance, valuation assessments, and verification of ownership. This rigorous process ensures that the tokenized assets represent valuable and legitimate physical or financial assets.

Smart Contract Development

Once the asset is selected, developers create smart contracts that define the token’s specifications. These contracts determine whether the token is fungible or non-fungible, select appropriate token standards (such as ERC20 or ERC721), and choose the blockchain platform best suited for the token’s purpose. Smart contracts automate ownership transfers, dividend distributions, and other functions, streamlining asset management and reducing counterparty risk.

Oracle Integration

A crucial component of RWA tokenization is integrating real world data with blockchain networks. Oracles like Chainlink securely bridge off-chain information to on-chain environments, ensuring that the digital tokens accurately reflect the status and value of the underlying assets. This integration allows tokenized real world assets to function effectively within decentralized finance ecosystems.

Market Growth and Institutional Adoption

The RWA sector has witnessed explosive growth, with overall market capitalization reaching unprecedented levels. By September 2025, top Real World Assets coins collectively boast a market cap of approximately $38.46 billion, driven largely by strong interest from institutional investors and financial institutions.

Forecasts suggest that by the end of 2025, the total value of RWAs on-chain (excluding stablecoins) could surpass $500 billion, with over $50 billion already tokenized. Prominent financial players are spearheading this movement:

  • BlackRock introduced the BUIDL tokenized money market fund, pioneering tokenized treasury investments.
  • Goldman Sachs and BNP Paribas have launched pilot projects on the Canton Network to explore tokenized asset offerings.
  • Fidelity and VanEck announced plans for tokenized funds slated for 2025.
  • HSBC debuted cross-border tokenized deposit products, enhancing global access.

This institutional adoption is a testament to the growing confidence in the digital asset ecosystem and the potential for RWAs to transform traditional finance.

Benefits of RWA Tokenization

The tokenization of real-world assets brings numerous advantages that revolutionize how investors interact with traditional and physical assets:

Enhanced Liquidity

Many traditionally illiquid assets such as real estate and private equity become tradeable 24/7 through tokenization. The ability to buy and sell fractions of assets on secondary markets eliminates lengthy settlement processes and unlocks liquidity pools that were previously inaccessible.

Fractional Ownership

Tokenization enables fractional ownership, allowing investors to purchase small portions of high-value assets. This lowers entry barriers and democratizes access to markets like real estate investment and government bonds, which have traditionally required substantial capital.

Global Accessibility

By leveraging blockchain technology, tokenized assets transcend geographic and regulatory boundaries. Investors worldwide gain global access to diverse asset classes, promoting financial inclusion and broadening the investor base.

Transparency and Security

Blockchain offers immutable records of ownership and transaction history, enhancing transparency in asset management. Coupled with robust security measures, this reduces fraud and increases investor confidence.

Cost Efficiency

Automated processes via smart contracts eliminate intermediaries, reducing transaction fees and administrative overhead. This streamlining leads to faster settlements and improved cost efficiency for both asset managers and investors.

Leveraging Token Metrics for RWA Trading Success

As the RWA market grows, navigating its complexities requires sophisticated tools and analytics. Token Metrics stands out as a premier crypto trading and analytics platform, empowering investors to make informed decisions in the evolving RWA landscape.

Token Metrics uses advanced AI-powered analytics to analyze market trends, token performance, and emerging investment opportunities across thousands of tokens, including those representing RWAs. Its features include:

  • Real-time AI buy and sell signals that help spot winning tokens early.
  • Deep-dive research tools that assess tokenomics, underlying asset quality, and growth potential.
  • AI-curated portfolios optimized for short and long-term gains.
  • Seamless trading integration with API connectivity, enabling users to execute trades based on AI insights.

For investors seeking to capitalize on the growth of RWAs, Token Metrics offers a comprehensive toolkit to enhance decision-making and portfolio management.

Current Challenges and Future Outlook

Despite the promising potential, real world assets rwas face several challenges that must be addressed for widespread adoption:

Regulatory Uncertainty

The legal status of tokenized RWAs remains ambiguous in many jurisdictions, as these tokens do not fit neatly into existing categories like commodities or securities. This regulatory uncertainty complicates compliance and investor protection efforts.

Standardization Issues

The lack of universal protocols for RWA tokens hampers interoperability across different blockchain platforms and ecosystems. Standardization is critical for seamless asset transfer and integration with traditional financial systems.

Security Risks

While blockchain offers enhanced security, the systems remain vulnerable to exploits and hacker attacks. Protecting digital tokens and ensuring the integrity of private blockchain networks are ongoing priorities.

Nevertheless, the outlook is optimistic. Regulatory clarity is expected to improve, with influential appointments such as Paul Atkins as SEC chair signaling a more defined legal framework. Continued innovation in digital technology and onchain finance will further streamline real world asset tokenization, making it more accessible and secure.

Leading RWA Platforms and Projects

Several pioneering projects are shaping the RWA ecosystem by providing infrastructure and innovative solutions:

  • Ondo Finance (ONDO) specializes in tokenizing U.S. Treasuries and traditional financial products, offering institutional clients new avenues for fixed-income investing.
  • Centrifuge (CFG) builds infrastructure that connects real-world assets to DeFi protocols, enabling asset owners to tokenize and finance their holdings.
  • Maple Finance focuses on undercollateralized lending to institutions, bridging traditional finance and crypto capital.
  • TrueFi provides uncollateralized lending protocols aimed at real-world businesses, supporting growth through decentralized credit.

Projects like Ondo, VeChain, and Chromia are recognized as some of the best RWA tokens for diversified portfolios. VeChain, in particular, leverages its experience with mainstream firms to enhance data management and tokenization processes, reinforcing the ecosystem’s robustness.

Conclusion

Real-World Assets represent a paradigm shift in ownership, investment, and financial markets. By converting tangible assets and traditional assets into digital tokens, the financial industry is moving towards a more inclusive, efficient, and transparent system that benefits both retail and institutional investors.

The era of real world asset tokenization is no longer a distant vision but a present reality, with 2025 marking a pivotal year in narrowing the divide between crypto-native communities and traditional finance. For investors eager to harness this revolutionary trend, platforms like Token Metrics provide the essential tools and insights needed to navigate the complex RWA landscape successfully.

Ultimately, the convergence of blockchain technology and traditional financial assets is not just changing how we invest—it is redefining the very nature of asset ownership and participation in the digital economy. Embracing this digital transformation unlocks unparalleled opportunities for financial inclusion, cost efficiency, and enhanced liquidity in the global financial system.

Recent Posts

No Item Found
Research

Crypto Market Cools Off: What Is Token Metrics AI Saying Now

Token Metrics Team
5 min
MIN

Introduction

The euphoria of April and May in the crypto market has officially hit the brakes. While traders were riding high just weeks ago, the mood has shifted — and the data confirms it. Token Metrics’ proprietary AI signals flipped bearish on May 30, and since then, the market has been slowly but steadily declining.

In this post, we break down what’s happened since the bearish signal, how major altcoins and sectors are reacting, and what Token Metrics’ indicators are telling us about what might come next.

The Big Picture: Cooling Off After a Hot Q1 and Q2 Start

The platform’s AI signal turned bearish on May 30 when the total crypto market cap hit $3.34 trillion. Since then, the momentum that defined early 2025 has reversed.

This wasn’t a sudden crash — it’s a slow bleed. The signal shift didn’t come from headline-driven panic, but from data-level exhaustion: volume softening, sentiment stalling, and trend strength fading across most tokens.

Token Metrics AI recognized the shift — and issued the warning.

What the Bearish Signal Means

The AI model analyzes over 80 metrics across price, volume, sentiment, and on-chain data. When key trends across these data sets weaken, the system flips from bullish (green) to bearish (red).

On May 30:

  • Trader Grades across most tokens declined
  • Signal sentiment flipped bearish
  • Momentum and velocity cooled down

According to the model, these were signs of a broad de-risking cycle — not just isolated weakness.

Sectors Showing Declines

Even tokens that had been performing well throughout Q2 began to stall or roll over.

🚨 Launch Coin

Previously one of the top performers in April, Launch Coin saw its grades decrease and price action softened.It may even be rebranding — a typical signal that a project is pivoting after a hype cycle.

🏦 Real World Assets (RWAs)

RWAs were hot in March–May, but by early June, volume and signal quality had cooled off significantly.

🔐 ZK and L2s

Projects like Starknet and zkSync, once dominant in trader attention, have seen signal strength drop, with many now scoring below 70.

The cooling effect is broad, touching narratives, sectors, and high-performing individual tokens alike.

The Bull-Bear Indicator in Action

One of the key tools used by Token Metrics is the Bull vs. Bear Indicator, which aggregates bullish vs. bearish signals across all tokens tracked.

As of early June:

  • The percentage of tokens with bullish signals dropped to its lowest since January.
  • New projects launching with strong grades also saw a decline.
  • Even community-favorite tokens began receiving “exit” alerts.

This isn’t fear — it’s fatigue.

How Traders Are Reacting

During the webinar, we noted that many users who rely on Token Metrics signals began rotating into stables once the May 30 signal flipped. Others reduced leverage, paused entries, or shifted into defensive plays like ETH and BTC.

This reflects an important philosophy:

"When the data changes, we change our approach."

Instead of trying to fight the tape or chase rebounds, disciplined traders are using the bearish signal to protect gains and preserve capital.

What About Ethereum and Bitcoin?

Even ETH and BTC, the two bellwether assets, aren’t immune.

  • Ethereum: Lost momentum after a strong May push. Its Trader Grade is dropping, and the AI signals currently reflect neutral-to-bearish sentiment.
  • Bitcoin: While still holding structure better than altcoins, it has also declined since peaking above $72k. Volume weakening and sentiment falling suggest caution.

In previous cycles, ETH and BTC acted as shelters during altcoin corrections. But now, even the majors show weakness — another reason why the bearish flip matters.

What Could Reverse This?

Abdullah Sarwar, head of research at Token Metrics, mentioned that for the signals to flip back bullish, we would need to see:

  • Increased momentum across top tokens
  • New narratives (e.g., real-world utility, cross-chain demand)
  • Higher volume and liquidity inflows
  • Positive macro or ETF news

Until then, the system will remain in defensive mode — prioritizing safety over chasing trades.

How to Act During a Bearish Signal

The team offered several tips for traders during this cooling-off period:

  1. Reduce exposure
    Don’t hold full positions in assets with weak grades or bearish signals.

  2. Watch signal reversals
    Keep an eye on sudden bullish flips with high Trader Grades — they often mark trend reversals.

  3. Rebalance into safer assets
    BTC, ETH, or even stables allow you to sit on the sidelines while others take unnecessary risk.

  4. Use Token Metrics filters
    Use the platform to filter for:

    • Top tokens with >80 grades
    • Signals that flipped bullish in the last 3 days
    • Low market-cap tokens with strong on-chain activity

These tools help find exceptions in a weak market.

Conclusion: Bearish Doesn’t Mean Broken

Markets cycle — and AI sees it before headlines do.

Token Metrics' bearish signal wasn’t a call to panic. It was a calibrated, data-backed alert that the trend had shifted — and that it was time to switch from offense to defense.

If you’re navigating this new phase, listen to the data. Use the tools. And most importantly, avoid trading emotionally.

The bull market might return. When it does, Token Metrics AI will flip bullish again — and you’ll be ready.

Research

Backtesting Token Metrics AI: Can AI Grades Really Predict Altcoin Breakouts?

Token Metrics Team
5 min
MIN

To test the accuracy of Token Metrics' proprietary AI signals, we conducted a detailed six-month backtest across three different tokens — Fartcoin, Bittensor ($TAO), and Ethereum. Each represents a unique narrative: memecoins, AI infrastructure, and blue-chip Layer 1s. Our goal? To evaluate how well the AI’s bullish and bearish signals timed market trends and price action.

Fartcoin:

The green and red dots on the following Fartcoin price chart represent the bullish and bearish market signals, respectively. Since Nov 26, 2024, Token Metrics AI has given 4 trading signals for Fartcoin. Let’s analyze each signal separately.

The Fartcoin chart above displays green and red dots that mark bullish and bearish signals from the Token Metrics AI, respectively. Over the last six months — starting November 26, 2024 — our system produced four significant trade signals for Fartcoin. Let’s evaluate them one by one.

The first major signal was bullish on November 26, 2024, when Fartcoin was trading at $0.29. This signal preceded a massive run-up, with the price topping out at $2.49. That’s an astounding 758% gain — all captured within just under two months. It’s one of the most powerful validations of the AI model’s ability to anticipate momentum early.

Following that rally, a bearish signal was triggered on January 26, 2025, just before the market corrected. Fartcoin retraced sharply, plunging 74.76% from the highs. Traders who acted on this bearish alert could have avoided substantial drawdowns — or even profited through short-side exposure.

On March 25, 2025, the AI turned bullish again, as Fartcoin traded near $0.53. Over the next several weeks, the token surged to $1.58, a 198% rally. Again, the AI proved its ability to detect upward momentum early.

Most recently, on June 1, 2025, Token Metrics AI flipped bearish once again. The current Trader Grade of 24.34 reinforces this view. For now, the system warns of weakness in the memecoin market — a trend that appears to be playing out in real-time.

Across all four trades, the AI captured both the explosive upside and protected traders from steep corrections — a rare feat in the volatile world of meme tokens.

Bittensor

Next, we examine Bittensor, the native asset of the decentralized AI Layer 1 network. Over the last six months, Token Metrics AI produced five key signals — and the results were a mixed bag but still largely insightful.

In December 2024, the AI turned bearish around $510, which preceded a sharp decline to $314 by February — a 38.4% drawdown. This alert helped traders sidestep a brutal correction during a high-volatility period.

On February 21, 2025, the system flipped bullish, but this trade didn't play out as expected. The price dropped 25.4% after the signal. Interestingly, the AI reversed again with a bearish signal just five days later, showing how fast sentiment and momentum can shift in emerging narratives like AI tokens.

The third signal marked a solid win: Bittensor dropped from $327 to $182.9 following the bearish call — another 44% drop captured in advance.

In April 2025, momentum returned. The AI issued a bullish alert on April 19, with TAO at $281. By the end of May, the token had rallied to over $474, resulting in a 68.6% gain — one of the best performing bullish signals in the dataset.

On June 4, the latest red dot (bearish) appeared. The model anticipates another downward move — time will tell if it materializes, but the track record suggests caution is warranted.

Ethereum

Finally, we analyze the AI’s predictive power for Ethereum, the second-largest crypto by market cap. Over the six-month window, Token Metrics AI made three major calls — and each one captured critical pivots in ETH’s price.

On November 7, 2024, a green dot (bullish) appeared when ETH was priced at $2,880. The price then surged to $4,030 in less than 40 days, marking a 40% gain. For ETH, such a move is substantial and was well-timed.

By December 24, the AI flipped bearish with ETH trading at $3,490. This signal was perhaps the most important, as it came ahead of a major downturn. ETH eventually bottomed out near $1,540 in April 2025, avoiding a 55.8% drawdown for those who acted on the signal.

In May 2025, the AI signaled another bullish trend with ETH around $1,850. Since then, the asset rallied to $2,800, creating a 51% gain.

These three trades — two bullish and one bearish — show the AI’s potential in navigating large-cap assets during both hype cycles and corrections.Backtesting Token Metrics AI across memecoins, AI narratives, and Ethereum shows consistent results: early identification of breakouts, timely exit signals, and minimized risk exposure. While no model is perfect, the six-month history reveals a tool capable of delivering real value — especially when used alongside sound risk management.

Whether you’re a trader looking to time the next big altcoin rally or an investor managing downside in turbulent markets, Token Metrics AI signals — available via the fastest crypto API — offer a powerful edge.

Backtesting Token Metrics AI across memecoins, AI narratives, and Ethereum shows consistent results: early identification of breakouts, timely exit signals, and minimized risk exposure. While no model is perfect, the six-month history reveals a tool capable of delivering real value — especially when used alongside sound risk management.

Whether you’re a trader looking to time the next big altcoin rally or an investor managing downside in turbulent markets, Token Metrics AI signals — available via the fastest crypto API — offer a powerful edge.

Research

Token Metrics API vs. CoinGecko API: Which Crypto API Should You Choose in 2025?

Token Metrics Team
7 min
MIN

As the crypto ecosystem rapidly matures, developers, quant traders, and crypto-native startups are relying more than ever on high-quality APIs to build data-powered applications. Whether you're crafting a trading bot, developing a crypto research platform, or launching a GPT agent for market analysis, choosing the right API is critical.

Two names dominate the space in 2025: CoinGecko and Token Metrics. But while both offer access to market data, they serve fundamentally different purposes. CoinGecko is a trusted source for market-wide token listings and exchange metadata. Token Metrics, on the other hand, delivers AI-powered intelligence for predictive analytics and decision-making.

Let’s break down how they compare—and why the Token Metrics API is the superior choice for advanced, insight-driven builders.

🧠 AI Intelligence: Token Metrics Leads the Pack

At the core of Token Metrics is machine learning and natural language processing. It’s not just a data feed. It’s an AI that interprets the market.

Features exclusive to Token Metrics API:

  • Trader Grade (0–100) – Short-term momentum score based on volume, volatility, and technicals
  • Investor Grade (0–100) – Long-term asset quality score using fundamentals, community metrics, liquidity, and funding
  • Bullish/Bearish AI Signals – Real-time alerts based on over 80 weighted indicators
  • Sector-Based Smart Indices – Curated index sets grouped by theme (AI, DeFi, Gaming, RWA, etc.)
  • Sentiment Scores – Derived from social and news data using NLP
  • LLM-Friendly AI Reports – Structured, API-returned GPT summaries per token
  • Conversational Agent Access – GPT-based assistant that queries the API using natural language

In contrast, CoinGecko is primarily a token and exchange aggregator. It offers static data: price, volume, market cap, supply, etc. It’s incredibly useful for basic info—but it lacks context or predictive modeling.

Winner: Token Metrics — The only crypto API built for AI-native applications and intelligent automation.

🔍 Data Depth & Coverage

While CoinGecko covers more tokens and more exchanges, Token Metrics focuses on providing actionable insights rather than exhaustively listing everything.

Feature                                                   Token Metrics API                                    CoinGecko API

Real-time + historical OHLCV              ✅                                                          ✅

Trader/Investor Grades                        ✅ AI-powered                                     ❌

Exchange Aggregation                         ✅ (Used in indices, not exposed)     ✅

Sentiment & Social Scoring                  ✅ NLP-driven                                     ❌

AI Signals                                               ✅                                                         ❌

Token Fundamentals                            ✅ Summary via deepdive         ⚠️ Limited

                                                                        endpoint

NFT Market Data                                  ❌                                                          ✅

On-Chain Behavior                               ✅ Signals + Indices                   ⚠️ Pro-only (limited)

If you're building something analytics-heavy—especially trading or AI-driven—Token Metrics gives you depth, not just breadth.

Verdict: CoinGecko wins on broad metadata coverage. Token Metrics wins on intelligence and strategic utility.

🛠 Developer Experience

One of the biggest barriers in Web3 is getting devs from “idea” to “prototype” without friction. Token Metrics makes that easy.

Token Metrics API Includes:

  • SDKs for Python, Node.js, and Postman
  • Quick-start guides and GitHub sample projects
  • Integrated usage dashboard to track limits and history
  • Conversational agent to explore data interactively
  • Clear, logical endpoint structure across 21 data types

CoinGecko:

  • Simple REST API
  • JSON responses
  • Minimal docs
  • No SDKs
  • No built-in tooling (must build from scratch)

Winner: Token Metrics — Serious devs save hours with ready-to-go SDKs and utilities.

📊 Monitoring, Quotas & Support

CoinGecko Free Tier:

  • 10–30 requests/min
  • No API key needed
  • Public endpoints
  • No email support
  • Rate limiting enforced via IP

Token Metrics Free Tier:

  • 5,000 requests/month
  • 1 request/min
  • Full access to AI signals, grades, rankings
  • Telegram & email support
  • Upgrade paths to 20K–500K requests/month

While CoinGecko’s no-login access is beginner-friendly, Token Metrics offers far more power per call. With just a few queries, your app can determine which tokens are gaining momentum, which are losing steam, and how portfolios should be adjusted.

Winner: Token Metrics — Better for sustained usage, scaling, and production reliability.

💸 Pricing & Value

Plan Feature                CoinGecko Pro            Token Metrics API

Entry Price                  ~$150/month                $99/month

AI Grades & Signals            ❌                               ✅ 

Sentiment Analytics            ❌                               ✅

Sector Index Insights          ❌                               ✅

NLP Token Summaries       ❌                                ✅

Developer SDKs                  ❌                                ✅

Token-Based Discounts     ❌                                ✅ (up to 35% with $TMAI)

For what you pay, Token Metrics delivers quant models and intelligent signal streams — not just raw price.

Winner: Token Metrics — Cheaper entry, deeper value.

🧠 Use Cases Where Token Metrics API Shines

  • Trading Bots
    Use Trader Grade and Signal endpoints to enter/exit based on AI triggers.
  • GPT Agents
    Generate conversational answers for “What’s the best AI token this week?” using structured summaries.
  • Crypto Dashboards
    Power sortable, filtered token tables by grade, signal, or narrative.
  • Portfolio Rebalancers
    Track real-time signals for tokens held, flag risk zones, and show sector exposure.
  • LLM Plugins
    Build chat-based investment tools with explainability and score-based logic.

🧠 Final Verdict: CoinGecko for Info, Token Metrics for Intelligence

If you're building a crypto price tracker, NFT aggregator, or exchange overview site, CoinGecko is a solid foundation. It’s reliable, broad, and easy to get started.

But if your product needs to think, adapt, or help users make better decisions, then Token Metrics API is in another class entirely.

You're not just accessing data — you're integrating AI, machine learning, and predictive analytics into your app. That’s the difference between showing the market and understanding it.

🔗 Ready to Build Smarter?

  • ✅ 5,000 free API calls/month
  • 🤖 Trader & Investor Grades
  • 📊 Live Bull/Bear signals
  • 🧠 AI-powered summaries and GPT compatibility
  • ⚡ 21 endpoints + Python/JS SDKs

👉 Start with Token Metrics API

Research

Python Quick-Start with Token Metrics: The Ultimate Crypto Price API

Token Metrics Team
10 min
MIN

If you’re a Python developer looking to build smarter crypto apps, bots, or dashboards, you need two things: reliable data and AI-powered insights. The Token Metrics API gives you both. In this tutorial, we’ll show you how to quickly get started using Token Metrics as your Python crypto price API, including how to authenticate, install the SDK, and run your first request in minutes.

Whether you’re pulling live market data, integrating Trader Grades into your trading strategy, or backtesting with OHLCV data, this guide has you covered.

🚀 Quick Setup for Developers in a Hurry

Install the official Token Metrics Python SDK:

pip install tokenmetrics

Or if you prefer working with requests directly, no problem. We’ll show both methods below.

🔑 Step 1: Generate Your API Key

Before anything else, you’ll need a Token Metrics account.

  1. Go to app.tokenmetrics.com/en/api
  2. Log in and navigate to the API Keys Dashboard
  3. Click Generate API Key
  4. Name your key (e.g., “Development”, “Production”)
  5. Copy it immediately — keep it secret.

You can monitor usage, rate limits, and quotas right from the dashboard. Track each key’s status, last used date, and revoke access at any time.

📈 Step 2: Retrieve Crypto Prices in Python

Here’s a simple example to fetch the latest price data for Ethereum (ETH):

import requests

API_KEY = "YOUR_API_KEY"

headers = {"x-api-key": API_KEY}

url = "https://api.tokenmetrics.com/v2/daily-ohlcv?symbol=ETH&startDate=<YYYY-MM-DD>&endDate=<YYYY-MM-DD>"

response = requests.get(url, headers=headers)

data = response.json()

for candle in data['data']:

    print(f"Date: {candle['DATE']} | Close: ${candle['CLOSE']}")

You now have a working python crypto price API pipeline. Customize startDate or endDate to get specific range of historical data.

📊 Add AI-Powered Trader Grades

Token Metrics’ secret sauce is its AI-driven token ratings. Here’s how to access Trader Grades for ETH:

grade_url = "https://api.tokenmetrics.com/v2/trader-grades?symbol=ETH&limit=30d"

grades = requests.get(grade_url, headers=headers).json()['data']

for day in grades:

    print(f"{day['DATE']} — Trader Grade: {day['TA_GRADE']}")

Use this data to automate trading logic (e.g., enter trades when Grade > 85) or overlay on charts.

🔁 Combine Data for Backtesting

Want to test a strategy? Merge OHLCV and Trader Grades for any token:

import pandas as pd

ohlcv_df = pd.DataFrame(data['data'])

grades_df = pd.DataFrame(grades)

combined_df = pd.merge(ohlcv_df, grades_df, on="DATE")

print(combined_df.head())

Now you can run simulations, build analytics dashboards, or train your own models.

⚙️ Endpoint Coverage for Python Devs

  • /daily-ohlcv: Historical price data
  • /trader-grades: AI signal grades (0–100)
  • /trading-signals: Bullish/Bearish signals for short and long positions.
  • /sentiment: AI-modeled sentiment scores
  • /tmai: Ask questions in plain English

All endpoints return structured JSON and can be queried via requests, axios, or any modern client.

🧠 Developer Tips

  • Each request = 1 credit (tracked in real time)
  • Rate limits depend on your plan (Free = 1 req/min)
  • Use the API Usage Dashboard to monitor and optimize
  • Free plan = 5,000 calls/month — perfect for testing and building MVPs

💸 Bonus: Save 35% with $TMAI

You can reduce your API bill by up to 35% by staking and paying with Token Metrics’ native token, $TMAI. Available via the settings → payments page.

🌐 Final Thoughts

If you're searching for the best python crypto price API with more than just price data, Token Metrics is the ultimate choice. It combines market data with proprietary AI intelligence, trader/investor grades, sentiment scores, and backtest-ready endpoints—all in one platform.

✅ Real-time & historical data
✅ RESTful endpoints
✅ Python-ready SDKs and docs
✅ Free plan to start building today

Start building today → tokenmetrics.com/api

Looking for SDK docs? Explore the full Python Quick Start Guide

Research

Crypto API to Google Sheets in 5 Minutes: How to Use Token Metrics API with Apps Script

Token Metrics Team
6 min
MIN

If you're a trader, data analyst, or crypto enthusiast, chances are you've wanted to pull live crypto data directly into Google Sheets. Whether you're tracking prices, building custom dashboards, or backtesting strategies, having real-time data at your fingertips can give you an edge.

In this guide, we'll show you how to integrate the Token Metrics API — a powerful crypto API with free access to AI-powered signals — directly into Google Sheets in under 5 minutes using Google Apps Script.

📌 Why Use Google Sheets for Crypto Data?

Google Sheets is a flexible, cloud-based spreadsheet that:

  • Requires no coding to visualize data
  • Can be shared and updated in real time
  • Offers formulas, charts, and conditional formatting
  • Supports live API connections with Apps Script

When combined with the Token Metrics API, it becomes a powerful dashboard that updates live with Trader Grades, Bull/Bear Signals, historical OHLCV data, and more.

🚀 What Is Token Metrics API?

The Token Metrics API provides real-time and historical crypto data powered by AI. It includes:

  • Trader Grade: A score from 0 to 100 showing bullish/bearish potential
  • Bull/Bear Signal: A binary signal showing market direction
  • OHLCV: Open-High-Low-Close-Volume price history
  • Token Metadata: Symbol, name, category, market cap, and more

The best part? The free Basic Plan includes:

  • 5,000 API calls/month
  • Access to core endpoints
  • Hourly data refresh
  • No credit card required

👉 Sign up for free here

🛠️ What You’ll Need

  • A free Token Metrics API key
  • A Google account
  • Basic familiarity with Google Sheets

⚙️ How to Connect Token Metrics API to Google Sheets

Here’s how to get live AI-powered crypto data into Sheets using Google Apps Script.

🔑 Step 1: Generate Your API Key

  1. Visit: https://app.tokenmetrics.com/en/api
  2. Click “Generate API Key”
  3. Copy it — you’ll use this in the script

📄 Step 2: Create a New Google Sheet

  1. Go to Google Sheets
  2. Create a new spreadsheet
  3. Click Extensions > Apps Script

💻 Step 3: Paste This Apps Script

const TOKEN_METRICS_API_KEY = 'YOUR_API_KEY_HERE';

async function getTraderGrade(symbol) {

  const url = `https://api.tokenmetrics.com/v2/trader-grades?symbol=${symbol.toUpperCase()}`;

  const options = {

    method: 'GET',

    contentType: 'application/json',

    headers: {

      'accept': 'application/json',

      'x-api-key': TOKEN_METRICS_API_KEY,

    },

    muteHttpExceptions: true

  };

  

  const response = UrlFetchApp.fetch(url, options);

  const data = JSON.parse(response.getContentText() || "{}")

  

  if (data.success && data.data.length) {

    const coin = data.data[0];

    return [

      coin.TOKEN_NAME,

      coin.TOKEN_SYMBOL,

      coin.TA_GRADE,

      coin.DATE

    ];

  } else {

    return ['No data', '-', '-', '-'];

  }

}

async function getSheetData() {

  const sheet = SpreadsheetApp.getActiveSpreadsheet().getActiveSheet();

  const symbols = sheet.getRange('A2:A').getValues().flat().filter(Boolean);

  const results = [];

  results.push(['Name', 'Symbol', 'Trader Grade', 'Date']);

  for (const symbol of symbols) {

    if (symbol) {

      const row = await getTraderGrade(symbol);

      results.push(row);

    }

  }

  sheet.getRange(2, 2, results.length, results[0].length).setValues(results);

}

🧪 Step 4: Run the Script

  1. Replace 'YOUR_API_KEY_HERE' with your real API key.
  2. Save the project as TokenMetricsCryptoAPI.
  3. In your sheet, enter a list of symbols (e.g., BTC, ETH, SOL) in Column A.
  4. Go to the script editor and run getSheetData() from the dropdown menu.

Note: The first time, Google will ask for permission to access the script.

✅ Step 5: View Your Live Data

After the script runs, you’ll see:

  • Coin name and symbol
  • Trader Grade (0–100)
  • Timestamp

You can now:

  • Sort by Trader Grade
  • Add charts and pivot tables
  • Schedule automatic updates with triggers (e.g., every hour)

🧠 Why Token Metrics API Is Ideal for Google Sheets Users

Unlike basic price APIs, Token Metrics offers AI-driven metrics that help you:

  • Anticipate price action before it happens
  • Build signal-based dashboards or alerts
  • Validate strategies against historical signals
  • Keep your data fresh with hourly updates

And all of this starts for free.

🏗️ Next Steps: Expand Your Sheet

Here’s what else you can build:

  • A portfolio tracker that pulls your top coins’ grades
  • A sentiment dashboard using historical OHLCV
  • A custom screener that filters coins by Trader Grade > 80
  • A Telegram alert system triggered by Sheets + Apps Script + Webhooks

You can also upgrade to the Advanced Plan to unlock 21 endpoints including:

  • Investor Grades
  • Smart Indices
  • Sentiment Metrics
  • Quantitative AI reports
  • 60x API speed

🔐 Security Tip

Never share your API key in a public Google Sheet. Use script-level access and keep the sheet private unless required.

🧩 How-To Schema Markup (for SEO)

{

  "@context": "https://schema.org",

  "@type": "HowTo",

  "name": "Crypto API to Google Sheets in 5 Minutes",

  "description": "Learn how to connect the Token Metrics crypto API to Google Sheets using Google Apps Script and get real-time AI-powered signals and prices.",

  "totalTime": "PT5M",

  "supply": [

    {

      "@type": "HowToSupply",

      "name": "Google Sheets"

    },

    {

      "@type": "HowToSupply",

      "name": "Token Metrics API Key"

    }

  ],

  "tool": [

    {

      "@type": "HowToTool",

      "name": "Google Apps Script"

    }

  ],

  "step": [

    {

      "@type": "HowToStep",

      "name": "Get Your API Key",

      "text": "Sign up at Token Metrics and generate your API key from the API dashboard."

    },

    {

      "@type": "HowToStep",

      "name": "Create a New Google Sheet",

      "text": "Open a new sheet and list crypto symbols in column A."

    },

    {

      "@type": "HowToStep",

      "name": "Add Apps Script",

      "text": "Go to Extensions > Apps Script and paste the provided code, replacing your API key."

    },

    {

      "@type": "HowToStep",

      "name": "Run the Script",

      "text": "Execute the getSheetData function to pull data into the sheet."

    }

  ]

}

✍️ Final Thoughts

If you're serious about crypto trading or app development, integrating live market signals into your workflow can be a game-changer. With the Token Metrics API, you can get institutional-grade AI signals — right inside Google Sheets.

This setup is simple, fast, and completely free to start. Try it today and unlock a smarter way to trade and build in crypto.

👉 Get Your API Key & Start for Free

Announcements

🚀Put Your $TMAI to Work: Daily Rewards, No Locks, Up To 200% APR.

Token Metrics Team
5 min
MIN

Liquidity farming just got a major upgrade. Token Metrics AI ($TMAI) has launched its first liquidity incentive campaign on Merk — and it’s designed for yield hunters looking to earn fast, with no lockups, no gimmicks, and real rewards from Day 1.

📅 Campaign Details

  • Duration: June 5 – June 19, 2025
  • Rewards Begin: 17:00 UTC / 1:00 PM ET
  • Total TMAI Committed: 38 million+ $TMAI
  • No Lockups: Enter or exit at any time
  • APR Potential: Up to 200%

For two weeks, liquidity providers can earn high daily rewards across three different pools. All rewards are paid in $TMAI and distributed continuously — block by block — through the Merkl platform.

💧 Where to Earn – The Pools (as of June 5, 17:00 UTC)

Pool                                                    Starting APR %               Total Rewards (14 days)                Current TVL

Aerodrome WETH–TMAI        150%                                16.79M TMAI (~$11,000)                   $86,400

Uniswap v3 USDC–TMAI        200%                                14.92M TMAI (~$9,800)                    $19,900

Balancer 95/5 WETH–TMAI    200%                                5.60M TMAI (~$3,700)                       $9,500

These pools are live and actively paying rewards. APR rates aren’t displayed on Merkl until the first 24 hours of data are available — but early providers will already be earning.

🧠 Why This Campaign Stands Out

1. Turbo Rewards for a Short Time

This isn’t a slow-drip farm. The TMAI Merkl campaign is designed to reward action-takers. For the first few days, yields are especially high — thanks to low TVL and full daily reward distribution.

2. No Lockups or Waiting Periods

You can provide liquidity and withdraw it anytime — even the same day. There are no lockups, no vesting, and no delayed payout mechanics. All rewards accrue automatically and are claimable through Merkl.

3. Choose Your Risk Profile

You get to pick your exposure.

  • Want ETH upside? Stake in Aerodrome or Balancer.
  • Prefer stablecoin stability? Go with the Uniswap v3 USDC–TMAI pool.

4. Influence the Future of TMAI Yield Farming

This campaign isn’t just about yield — it’s a test. If enough users participate and volume grows, the Token Metrics Treasury will consider extending liquidity rewards into Q3 and beyond. That means more TMAI emissions, longer timelines, and consistent passive income opportunities for LPs.

5. Built for Transparency and Speed

Rewards are distributed via Merkl by Angle Labs, a transparent, gas-efficient platform for programmable liquidity mining. You can see the exact rewards, TVL, wallet counts, and pool analytics at any time.

🔧 How to Get Started

Getting started is simple. You only need a crypto wallet, some $TMAI, and a matching asset (either WETH or USDC, depending on the pool).

Step-by-step:

  1. Pick a pool:
    Choose from Aerodrome, Uniswap v3, or Balancer depending on your risk appetite and asset preference.

  2. Provide liquidity:
    Head to the Merkl link for your pool, deposit both assets, and your position is live immediately.

  3. Track your earnings:
    Watch TMAI accumulate daily in your Merkl dashboard. You can claim rewards at any time.

  4. Withdraw when you want:
    Since there are no lockups, you can remove your liquidity whenever you choose — rewards stop the moment liquidity is pulled.

🎯 Final Thoughts

This is a rare opportunity to earn serious rewards in a short amount of time. Whether you’re new to liquidity mining or a DeFi veteran, the TMAI Merkl campaign is built for speed, flexibility, and transparency.

You’re still early. The best yields happen in the first days, before TVL rises and APR stabilizes. Dive in now and maximize your returns while the turbo phase is still on.

👉 Join the Pools and Start Earning

Announcements

Token Metrics API Joins RapidAPI: The Fastest Way to Add AI-Grade Crypto Data to Your App

Token Metrics Team
5 min
MIN

The hunt for a dependable Crypto API normally ends in a graveyard of half-maintained GitHub repos, flaky RPC endpoints, and expensive enterprise feeds that hide the true cost behind a sales call. Developers waste days wiring those sources together, only to learn that one fails during a market spike or that data schemas never quite align. The result? Bots mis-fire, dashboards drift out of sync, and growth stalls while engineers chase yet another “price feed.”

That headache stops today. Token Metrics API, the same engine that powers more than 70 000 users on the Token Metrics analytics platform, is now live on RapidAPI—the largest marketplace of public APIs with more than four million developers. One search, one click, and you get an AI-grade Crypto API with institutional reliability and a 99.99 % uptime SLA.

Why RapidAPI + Token Metrics API Matters

  • Native developer workflow – No separate billing portal, OAuth flow, or SDK hunt. Click “Subscribe,” pick the Free plan, and RapidAPI instantly generates a key.

  • Single playground – Run test calls in-browser and copy snippets in cURL, Python, Node, Go, or Rust without leaving the listing.

  • Auto-scale billing – When usage grows, RapidAPI handles metering and invoices. You focus on product, not procurement.

What Makes the Token Metrics Crypto API Different?

  1. Twenty-one production endpoints

    Live & historical prices, hourly and daily OHLCV, proprietary Trader & Investor Grades, on-chain and social sentiment, AI-curated sector indices, plus deep-dive AI reports that summarise fundamentals, code health, and tokenomics.

  2. AI signals that win

    Over the last 24 months, more than 70 % of our bull/bear signals outperformed simple buy-and-hold. The API delivers that same alpha in flat JSON.

  3. Institutional reliability

    99.99 % uptime, public status page, and automatic caching for hot endpoints keep latency low even on volatile days.

Three-Step Quick Start

  1. Search “Token Metrics API” on RapidAPI and click Subscribe.
  2. Select the Free plan (5 000 calls / month, 20 request / min) and copy your key.
  3. Test:

bash

CopyEdit

curl -H "X-RapidAPI-Key: YOUR_KEY" \

     -H "X-RapidAPI-Host: tokenmetrics.p.rapidapi.com" \

     https://tokenmetrics.p.rapidapi.com/v2/trader-grades?symbol=BTC

The response returns Bitcoin’s live Trader Grade (0-100) and bull/bear flag. Swap BTC for any asset or explore /indices, /sentiment, and /ai-reports.

Real-World Use Cases

Use case

How developers apply the Token Metrics API

Automated trading bots

Rotate allocations when Trader Grade > 85 or sentiment flips bear.

Portfolio dashboards

Pull index weights, grades, and live prices in a single call for instant UI load.

Research terminals

Inject AI Reports into Notion/Airtable for analyst workflows.

No-code apps

Combine Zapier webhooks with RapidAPI to display live sentiment without code.

Early adopters report 30 % faster build times because they no longer reconcile five data feeds.

Pricing That Scales

  • Free – 5 000 calls, 30-day history.
  • Advanced – 20 000 calls, 3-month history.
  • Premium – 100 000 calls, 3-year history.
  • VIP – 500 000 calls, unlimited history.

Overages start at $0.005 per call.

Ready to Build?

• RapidAPI listing: https://rapidapi.com/tm-ai/api/token-metrics 

https://rapidapi.com/token-metrics-token-metrics-default/api/token-metrics-api1
• Developer docs: https://developers.tokenmetrics.com
• Support Slack: https://join.slack.com/t/tokenmetrics-devs/shared_invite/…

Spin up your key, ship your bot, and let us know what you create—top projects earn API credits and a Twitter shout-out.

Announcements

Crypto MCP Server: Token Metrics Brings One-Key Data to OpenAI, Claude, Cursor & Windsurf

Token Metrics Team
5 min
MIN

The modern crypto stack is a jungle of AI agents: IDE copilots that finish code, desktop assistants that summarise white-papers, CLI tools that back-test strategies, and slide generators that turn metrics into pitch decks. Each tool speaks a different protocol, so developers juggle multiple keys and mismatched JSON every time they query a Crypto API. That fragmentation slows innovation and creates silent data drift.

To fix it, we built the Token Metrics Crypto MCP Server—a lightweight gateway that unifies every tool around a single Multi-Client Crypto API. MCP (Multi-Client Protocol) sits in front of the Token Metrics API and translates requests into one canonical schema. Paste your key once, and a growing suite of clients speaks the same crypto language:

  • OpenAI Agents SDK – build ChatGPT-style agents with live grades
  • Claude Desktop – natural-language research powered by real-time metrics
  • Cursor / Windsurf IDE – in-editor instant queries
  • Raycast, Tome, VS Code, Cline and more

Why a Crypto MCP Server Beats Separate APIs

Consistency – Claude’s grade equals Windsurf’s grade.
One-time auth – store one key; clients handle headers automatically.
Faster prototyping – build in Cursor, test in Windsurf, present in Tome without rewriting queries.
Lower cost – shared quota plus $TMAI discount across all tools.

Getting Started

  1. Sign up for the Free plan (5 000 calls/month) and get your key: https://app.tokenmetrics.com/en/api
  2. Click the client you want to setup mcp for: smithery.ai/server/@token-metrics/mcp or https://modelcontextprotocol.io/clients

Your LLM assistant, IDE, CLI, and slide deck now share a single, reliable crypto brain. Copy your key, point to MCP, and start building the next generation of autonomous finance.

How Teams Use the Multi-Client Crypto API

  • Research to Execution – Analysts ask Claude for “Top 5 DeFi tokens with improving Trader Grades.” Cursor fetches code snippets; Windsurf trades the shortlist—all on identical data.
  • DevRel Demos – Share a single GitHub repo with instructions for Cursor, VS Code, and CLI; workshop attendees choose their favorite environment and still hit the same endpoints.
  • Compliance Dashboards – Tome auto-refreshes index allocations every morning, ensuring slide decks stay current without manual updates

Pricing, Rate Limits, and $TMAI

The Crypto MCP Server follows the core Token Metrics API plans: Free, Advanced, Premium, and VIP up to 500 000 calls/month and 600 req/min. Paying or staking $TMAI applies the familiar 10 % pay-in bonus plus up to 25 % staking rebate—35 % total savings. No new SKU, no hidden fee.

Build Once, Query Everywhere

The Token Metrics Crypto MCP Server turns seven scattered tools into one cohesive development environment. Your LLM assistant, IDE, CLI, and slideshow app now read from the same real-time ledger. Copy your key, point to MCP, and start building the next generation of autonomous finance.

• Github repo: https://github.com/token-metrics/mcp

👉 Ready to build? Grab your key from https://app.tokenmetrics.com/en/api

👉 Join Token Metrics API Telegram group  

Step-by-step client guides at smithery.ai/server/@token-metrics/mcp or https://modelcontextprotocol.io/clients — everything you need to wire Token Metrics MCP into Open AI, Claude, Cursor, Windsurf and more.

Research

Unlock Smarter Trades: Explore the All-New Token Metrics Market Page for Crypto Signal Discovery

Token Metrics Team
4 min
MIN

In the fast-paced world of crypto trading, timing is everything. One small delay can mean missing out on a breakout — or getting caught in a dump. That’s why we’ve completely redesigned the Token Metrics Market Page for 2025, bringing users faster access to the most accurate crypto trading signals powered by AI, on-chain analysis, and proprietary data science models.

This isn’t just a design refresh. It’s a full rethinking of how traders interact with data — with one goal in mind: make smarter trades faster.

Why Interface Matters in 2025’s Data-Driven Crypto Market

Crypto has matured. In 2025, the market is no longer driven by just hype or tweets. The best traders are using quantitative tools, AI signals, and real-time on-chain intelligence to stay ahead. And the Token Metrics Market Page is now built to meet that standard.

Gone are the days of switching between ten different platforms to get a complete view of a token. With the new Market Page, everything you need to make a data-backed trading decision is at your fingertips — no noise, no fluff, just high-signal information.

What’s New: Market Page Features That Give You an Edge

🔥 High-Performing Signals Front and Center

At the top of the redesigned Market Page, we’ve surfaced the week’s most compelling bullish and bearish crypto signals. These aren’t just based on price action — they’re curated using a powerful blend of AI, technical analysis, momentum trends, and on-chain activity.

Take Launch Coin week. It’s been topping the bullish charts due to a sharp uptick in volume and social traction — even though the price has begun to stabilize. Our platform caught the early signal, helping users ride the wave before it showed up on mainstream crypto news feeds.

Every token featured here has passed through our proprietary signal engine, which incorporates:

  • Token Metrics Trader Grade (short-term technical outlook)
  • Investor Grade (longer-term fundamentals)
  • Volume & Liquidity metrics
  • Community sentiment and social velocity
  • Exchange and VC backing

The result? You don’t just know what’s pumping — you know why it’s moving, and whether it’s likely to hold.

🧠 Smarter Filtering and Custom Dashboards

Want to isolate tokens in the DeFi space? Looking for only high-grade bullish signals on Ethereum or Solana? With new filtering options by sector, signal strength, and chain, you can zero in on the exact types of trades you're looking for — whether you're a casual trader or running a portfolio strategy.

This personalized dashboard experience brings hedge-fund-grade analytics to your fingertips, democratizing access to sophisticated data tools for retail and pro traders alike.

📉 Data Visuals at a Glance

Every token card on the Market Page now comes with a visual snapshot showing:

  • Recent price movement
  • Momentum trends
  • Short-term vs. long-term grades
  • Signal performance over time

No need to deep-dive into separate pages unless you want to — Token Metrics puts quick visual context right where you need it to reduce friction and increase speed.

📱 Mobile-Optimized for Trading on the Go

We know many users monitor the market and execute trades from their phone. That’s why we’ve ensured the entire Market Page is fully mobile-responsive, optimized for fast swipes, taps, and decisions without losing any key insights.

With Token Metrics, your next trade idea can start while you’re commuting, grabbing coffee, or even mid-conversation at a crypto meetup.

The Token Metrics Advantage: AI-Powered Crypto Trading in Real-Time

This redesign is just one piece of the broader Token Metrics vision — making AI-driven crypto trading accessible to everyone.

If you’re serious about catching the next 10x altcoin, surviving market crashes, or just improving your signal-to-noise ratio, here’s why thousands of crypto traders choose Token Metrics:

  • Real-time trading signals for 6,000+ tokens
  • AI-generated Trader and Investor Grades
  • Market signals backed by 80+ data points
  • Daily updates from our deep-dive research AI
  • Integrated with self-custody workflows
  • Trusted by analysts, devs, and hedge funds

Our users aren’t just following the market — they’re leading it.

Use Case: How Traders Are Winning with Token Metrics

One of our users recently shared how they caught a 47% pump on an obscure DePIN token by acting on a Buy Signal that showed up in the Market Page’s Bullish section three days before the breakout. The token had minimal social chatter at the time, but our models flagged rising volume, strong fundamentals, and a breakout formation building on the technical side.

Stories like this are becoming common. With every new feature and dataset added to Token Metrics, users are getting smarter, faster, and more confident in their crypto trades.

What’s Next for the Market Page

This is just the beginning. Coming soon to the Market Page:

  • 💡 Auto-alerts based on your saved filters
  • 📊 Historical signal performance analytics
  • 🛠️ Integrations with our API for power users
  • 🧵 Narrative filters based on trending themes (AI, DeFi, Memes, RWA, etc.)

We’re building the most intelligent crypto trading assistant on the web — and the new Market Page is your window into it.

Final Thoughts: Don’t Just React — Predict

In crypto, being early is everything. But with thousands of tokens and hundreds of narratives, knowing where to look can be overwhelming.

The redesigned Token Metrics Market Page removes the guesswork.

By giving you AI-powered insights, real-time signals, and actionable visualizations, it transforms your screen into a decision-making engine. Whether you’re day trading or managing a long-term altcoin portfolio, the right data — surfaced the right way — gives you the edge you need.

Visit the new Market Page today, and see why 2025’s smartest crypto traders are making Token Metrics their go-to tool for navigating this volatile, opportunity-packed market.

Ready to Trade Smarter?

Explore the new Market Page

Want the signal before the crowd?

Try Token Metrics free and get instant access to:

  • AI Signals
  • Investor and Trader Grades
  • Market Timing Tools
  • Bullish and Bearish Alerts

Because in crypto, data is the new alpha — and Token Metrics helps you unlock it.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Featured Posts

Crypto Basics Blog

Research Blogs

Announcement Blogs

Unlock the Secrets of Cryptocurrency

Sign Up for the Newsletter for the Exclusive Updates