
Every hour you wait is a signal you miss.

Stop Guessing, Start Trading: The Token Metrics API Advantage
Big news: We’re cranking up the heat on AI-driven crypto analytics with the launch of the Token Metrics API and our official SDK (Software Development Kit). This isn’t just an upgrade – it's a quantum leap, giving traders, hedge funds, developers, and institutions direct access to cutting-edge market intelligence, trading signals, and predictive analytics.
Crypto markets move fast, and having real-time, AI-powered insights can be the difference between catching the next big trend or getting left behind. Until now, traders and quants have been wrestling with scattered data, delayed reporting, and a lack of truly predictive analytics. Not anymore.
The Token Metrics API delivers 32+ high-performance endpoints packed with powerful AI-driven insights right into your lap, including:
- Trading Signals: AI-driven buy/sell recommendations based on real-time market conditions.
- Investor & Trader Grades: Our proprietary risk-adjusted scoring for assessing crypto assets.
- Price Predictions: Machine learning-powered forecasts for multiple time frames.
- Sentiment Analysis: Aggregated insights from social media, news, and market data.
- Market Indicators: Advanced metrics, including correlation analysis, volatility trends, and macro-level market insights.
Getting started with the Token Metrics API is simple:
- Sign up at www.tokenmetrics.com/api.
- Generate an API key and explore sample requests.
- Choose a tier–start with 50 free API calls/month, or stake TMAI tokens for premium access.
- Optionally–download the SDK, install it for your preferred programming language, and follow the provided setup guide.
At Token Metrics, we believe data should be decentralized, predictive, and actionable.
The Token Metrics API & SDK bring next-gen AI-powered crypto intelligence to anyone looking to trade smarter, build better, and stay ahead of the curve. With our official SDK, developers can plug these insights into their own trading bots, dashboards, and research tools – no need to reinvent the wheel.
Mastering the ChatGPT API: Practical Developer Guide
ChatGPT API has become a foundational tool for building conversational agents, content generation pipelines, and AI-powered features across web and mobile apps. This guide walks through how the API works, common integration patterns, cost and performance considerations, prompt engineering strategies, and security and compliance checkpoints — all framed to help developers design reliable, production-ready systems.
Overview: What the ChatGPT API Provides
The ChatGPT API exposes a conversational, instruction-following model through RESTful endpoints. It accepts structured inputs (messages, system instructions, temperature, max tokens) and returns generated messages and usage metrics. Key capabilities include multi-turn context handling, role-based prompts (system, user, assistant), and streaming responses for lower perceived latency.
When evaluating the API for a project, consider three high-level dimensions: functional fit (can it produce the outputs you need?), operational constraints (latency, throughput, rate limits), and cost model (token usage and pricing). Structuring experiments around these dimensions produces clearer decisions than ad-hoc prototyping.
How the ChatGPT API Works: Architecture & Tokens
At a technical level, the API exchanges conversational messages composed of roles and content. The model's input size is measured in tokens, not characters; both prompts and generated outputs consume tokens. Developers must account for:
- Input tokens: system+user messages sent with the request.
- Output tokens: model-generated content returned in the response.
- Context window: maximum tokens the model accepts per request, limiting historical context you can preserve.
Token-awareness is essential for cost control and designing concise prompts. Tools exist to estimate token counts for given strings; include these estimates in batching and truncation logic to prevent failed requests due to exceeding the context window.
Integration Patterns and Use Cases
Common patterns for integrating the ChatGPT API map to different functional requirements:
- Frontend chat widget: Short, low-latency requests per user interaction with streaming enabled for better UX.
- Server-side orchestration: Useful for multi-step workflows, retrieving and combining external data before calling the model.
- Batch generation pipelines: For large-scale content generation, precompute outputs asynchronously and store results for retrieval.
- Hybrid retrieval-augmented generation (RAG): Combine a knowledge store or vector DB with retrieval calls to ground responses in up-to-date data.
Select a pattern based on latency tolerance, concurrency requirements, and the need to control outputs with additional logic or verifiable sources.
Cost, Rate Limits, and Performance Considerations
Pricing for ChatGPT-style APIs typically ties to token usage and model selection. For production systems, optimize costs and performance by:
- Choosing the right model: Use smaller models for routine tasks where quality/latency tradeoffs are acceptable.
- Prompt engineering: Make prompts concise and directive to reduce input tokens and avoid unnecessary generation.
- Caching and deduplication: Cache common queries and reuse cached outputs when applicable to avoid repeated cost.
- Throttling: Implement exponential backoff and request queuing to respect rate limits and avoid cascading failures.
Measure end-to-end latency including network, model inference, and application processing. Use streaming when user-perceived latency matters; otherwise, batch requests for throughput efficiency.
Best Practices: Prompt Design, Testing, and Monitoring
Robust ChatGPT API usage blends engineering discipline with iterative evaluation:
- Prompt templates: Maintain reusable templates with placeholders to enforce consistent style and constraints.
- Automated tests: Create unit and integration tests that validate output shape, safety checks, and critical content invariants.
- Safety filters and moderation: Run model outputs through moderation or rule-based filters to detect unwanted content.
- Instrumentation: Log request/response sizes, latencies, token usage, and error rates. Aggregate metrics to detect regressions.
- Fallback strategies: Implement graceful degradation (e.g., canned responses or reduced functionality) when API latency spikes or quota limits are reached.
Adopt iterative prompt tuning: A/B different system instructions, sampling temperatures, and max tokens while measuring relevance, correctness, and safety against representative datasets.
Build Smarter Crypto Apps & AI Agents with Token Metrics
Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key
FAQ: What is the ChatGPT API and when should I use it?
The ChatGPT API is a conversational model endpoint for generating text based on messages and instructions. Use it when you need flexible, context-aware text generation such as chatbots, summarization, or creative writing assistants.
FAQ: How do tokens impact cost and context?
Tokens measure both input and output size. Longer prompts and longer responses increase token counts, which raises cost and can hit the model's context window limit. Optimize prompts and truncate history when necessary.
FAQ: What are common strategies for handling rate limits?
Implement client-side throttling, request queuing, exponential backoff on 429 responses, and prioritize critical requests. Monitor usage patterns and adjust concurrency to avoid hitting provider limits.
FAQ: How do I design effective prompts?
Start with a clear system instruction to set tone and constraints, use examples for format guidance, keep user prompts concise, and test iteratively. Templates and guardrails reduce variability in outputs.
FAQ: What security and privacy practices should I follow?
Secure API keys (do not embed in client code), encrypt data in transit and at rest, anonymize sensitive user data when possible, and review provider data usage policies. Apply access controls and rotate keys periodically.
FAQ: When should I use streaming responses?
Use streaming to improve perceived responsiveness for chat-like experiences or long outputs. Streaming reduces time-to-first-token and allows progressive rendering in UIs.
Disclaimer
This article is for informational and technical guidance only. It does not constitute legal, compliance, or investment advice. Evaluate provider terms and conduct your own testing before deploying models in production.
Mastering the OpenAI API: Practical Guide
The OpenAI API has become a foundation for building modern AI applications, from chat assistants to semantic search and generative agents. This post breaks down how the API works, core endpoints, implementation patterns, operational considerations, and practical tips to get reliable results while managing cost and risk.
How the OpenAI API Works
The OpenAI API exposes pre-trained and fine-tunable models through RESTful endpoints. At a high level, you send text or binary payloads and receive structured responses — completions, chat messages, embeddings, or file-based fine-tune artifacts. Communication is typically via HTTPS with JSON payloads. Authentication uses API keys scoped to your account, and responses include usage metadata to help with monitoring.
Understanding the data flow is useful: client app → API request (model, prompt, params) → model inference → API response (text, tokens, embeddings). Latency depends on model size, input length, and concurrency. Many production systems put the API behind a middleware layer to handle retries, caching, and prompt templating.
Key Features & Endpoints
The API surface typically includes several core capabilities you should know when planning architecture:
- Chat/Completion: Generate conversational or free-form text. Use system, user, and assistant roles for structured prompts.
- Embeddings: Convert text to dense vectors for semantic search, clustering, and retrieval-augmented generation.
- Fine-tuning: Customize models on domain data to improve alignment with specific tasks.
- Files & Transcriptions: Upload assets for fine-tune datasets or to transcribe audio to text.
- Moderation & Safety Tools: Automated checks can help flag content that violates policy constraints before generation is surfaced.
Choosing the right endpoint depends on the use case: embeddings for search/indexing, chat for conversational interfaces, and fine-tuning for repetitive, domain-specific prompts where consistency matters.
Practical Implementation Tips
Design patterns and practical tweaks reduce friction in real-world systems. Here are tested approaches:
- Prompt engineering and templates: Extract frequently used structures into templates and parameterize variables. Keep system messages concise and deterministic.
- Chunking & retrieval: For long-context tasks, use embeddings + vector search to retrieve relevant snippets and feed only the most salient content into the model.
- Batching & caching: Batch similar requests where possible to reduce API calls. Cache embeddings and immutable outputs to lower cost and latency.
- Retry logic and idempotency: Implement exponential backoff for transient errors and idempotent request IDs for safe retries.
- Testing and evaluation: Use automated tests to validate response quality across edge cases and measure drift over time.
For development workflows, maintain separate API keys and quotas for staging and production, and log both prompts and model responses (with privacy controls) to enable debugging and iterative improvement.
Security, Cost Control, and Rate Limits
Operational concerns are often the difference between a prototype and a resilient product. Key considerations include:
- Authentication: Store keys securely, rotate them regularly, and avoid embedding them in client-side code.
- Rate limits & concurrency: Respect published rate limits. Use client-side queues and server-side throttling to smooth bursts and avoid 429 errors.
- Cost monitoring: Track token usage by endpoint and user to identify high-cost flows. Use sampling and quotas to prevent runaway spend.
- Data handling & privacy: Define retention and redaction rules for prompts and responses. Understand whether user data is used for model improvement and configure opt-out where necessary.
Instrumenting observability — latency, error rates, token counts per request — lets you correlate model choices with operational cost and end-user experience.
Build Smarter Crypto Apps & AI Agents with Token Metrics
Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key
What are common failure modes and how to mitigate them?
Common issues include prompt ambiguity, hallucinations, token truncation, and rate-limit throttling. Mitigation strategies:
- Ambiguity: Add explicit constraints and examples in prompts.
- Hallucination: Use retrieval-augmented generation and cite sources where possible.
- Truncation: Monitor token counts and implement summarization or chunking for long inputs.
- Throttling: Apply client-side backoff and request shaping to prevent bursts.
Run adversarial tests to discover brittle prompts and incorporate guardrails in your application logic.
Scaling and Architecture Patterns
For scale, separate concerns into layers: ingestion, retrieval/indexing, inference orchestration, and post-processing. Use a vector database for embeddings, a message queue for burst handling, and server-side orchestration for prompt composition and retries. Edge caching for static outputs reduces repeated calls for common queries.
Consider hybrid strategies where smaller models run locally for simple tasks and the API is used selectively for high-value or complex inferences to balance cost and latency.
FAQ: How to get started and troubleshoot
What authentication method does the OpenAI API use?
Most implementations use API keys sent in an Authorization header. Keys must be protected server-side. Rotate keys periodically and restrict scopes where supported.
Which models are best for embeddings versus chat?
Embedding-optimized models produce dense vectors for semantic tasks. Chat or completion models prioritize dialogue coherence and instruction-following. Select based on task: search and retrieval use embeddings; conversational agents use chat endpoints.
How can I reduce latency for user-facing apps?
Use caching, smaller models for simple tasks, pre-compute embeddings for common queries, and implement warm-up strategies. Also evaluate regional endpoints and keep payload sizes minimal to reduce round-trip time.
What are best practices for fine-tuning?
Curate high-quality, representative datasets. Keep prompts consistent between fine-tuning and inference. Monitor for overfitting and validate on held-out examples to ensure generalization.
How do I monitor and manage costs effectively?
Track token usage by endpoint and user journey, set per-key quotas, and sample outputs rather than logging everything. Use batching and caching to reduce repeated calls, and enforce strict guards on long or recursive prompts.
Can I use the API for production-critical systems?
Yes, with careful design. Add retries, fallbacks, safety checks, and human-in-the-loop reviews for high-stakes outcomes. Maintain SLAs that reflect model performance variability and instrument monitoring for regressions.
Disclaimer
This article is for educational purposes only. It explains technical concepts, implementation patterns, and operational considerations related to the OpenAI API. It does not provide investment, legal, or regulatory advice. Always review provider documentation and applicable policies before deploying systems.
Inside DeepSeek API: Advanced Search for Crypto Intelligence
DeepSeek API has emerged as a specialized toolkit for developers and researchers who need granular, semantically rich access to crypto-related documents, on-chain data, and developer content. This article breaks down how the DeepSeek API works, common integration patterns, practical research workflows, and how AI-driven platforms can complement its capabilities without making investment recommendations.
What the DeepSeek API Does
The DeepSeek API is designed to index and retrieve contextual information across heterogeneous sources: whitepapers, GitHub repos, forum threads, on-chain events, and more. Unlike keyword-only search, DeepSeek focuses on semantic matching—returning results that align with the intent of a query rather than only literal token matches.
Key capabilities typically include:
- Semantic embeddings for natural language search.
- Document chunking and contextual retrieval for long-form content.
- Metadata filtering (chain, contract address, author, date).
- Streamed or batched query interfaces for different throughput needs.
Typical Architecture & Integration Patterns
Integrating the DeepSeek API into a product follows common design patterns depending on latency and scale requirements:
- Server-side retrieval layer: Your backend calls DeepSeek to fetch semantically ranked documents, then performs post-processing and enrichment before returning results to clients.
- Edge-caching and rate management: Cache popular queries and embeddings to reduce costs and improve responsiveness. Use exponential backoff and quota awareness for production stability.
- AI agent workflows: Use the API to retrieve context windows for LLM prompts—DeepSeek's chunked documents can help keep prompts relevant without exceeding token budgets.
When building integrations, consider privacy, data retention, and whether you need to host a private index versus relying on a hosted DeepSeek endpoint.
Research Workflows & Practical Tips
Researchers using the DeepSeek API can follow a repeatable workflow to ensure comprehensive coverage and defensible results:
- Define intent and query templates: Create structured queries that capture entity names, contract addresses, or conceptual prompts (e.g., “protocol upgrade risks” + contract).
- Layer filters: Use metadata to constrain results to a chain, date range, or document type to reduce noise.
- Iterative narrowing: Start with wide semantic searches, then narrow with follow-up queries using top results as new seeds.
- Evaluate relevance: Score results using both DeepSeek’s ranking and custom heuristics (recency, authoritativeness, on-chain evidence).
- Document provenance: Capture source URLs, timestamps, and checksums for reproducibility.
For reproducible experiments, version your query templates and save query-result sets alongside analysis notes.
Limitations, Costs, and Risk Factors
Understanding the constraints of a semantic retrieval API is essential for reliable outputs:
- Semantic drift: Embeddings and ranking models can favor topical similarity that may miss critical technical differences. Validate with deterministic checks (contract bytecode, event logs).
- Data freshness: Indexing cadence affects the visibility of the newest commits or on-chain events. Verify whether the API supports near-real-time indexing if that matters for your use case.
- Cost profile: High-volume or high-recall retrieval workloads can be expensive. Design sampling and caching strategies to control costs.
- Bias and coverage gaps: Not all sources are equally represented. Cross-check against primary sources where possible.
Build Smarter Crypto Apps & AI Agents with Token Metrics
Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key
FAQ: What developers ask most about DeepSeek API
What data sources does DeepSeek index?
DeepSeek typically indexes a mix of developer-centric and community data: GitHub, whitepapers, documentation sites, forums, and on-chain events. Exact coverage depends on the provider's ingestion pipeline and configuration options you choose when provisioning indexes.
How do embeddings improve search relevance?
Embeddings map text into vector space where semantic similarity becomes measurable as geometric closeness. This allows queries to match documents by meaning rather than shared keywords, improving recall for paraphrased or conceptually related content.
Can DeepSeek return structured on-chain data?
While DeepSeek is optimized for textual retrieval, many deployments support linking to structured on-chain records. A common pattern is to return document results with associated on-chain references (contract addresses, event IDs) so downstream systems can fetch transaction-level details from block explorers or node APIs.
How should I evaluate result quality?
Use a combination of automated metrics (precision@k, recall sampling) and human review. For technical subjects, validate excerpts against source code, transaction logs, and authoritative docs to avoid false positives driven by surface-level similarity.
What are best practices for using DeepSeek with LLMs?
Keep retrieved context concise and relevant: prioritize high-salience chunks, include provenance for factual checks, and use retrieval augmentation to ground model outputs. Also, monitor token usage and prefer compressed summaries for long sources.
How does it compare to other crypto APIs?
DeepSeek is focused on semantic retrieval and contextual search, while other crypto APIs may prioritize raw market data, on-chain metrics, or analytics dashboards. Combining DeepSeek-style search with specialized APIs (for price, on-chain metrics, or signals) yields richer tooling for research workflows.
Where can I learn more or get a demo?
Explore provider docs and example use cases. For integrated AI research and ratings, see Token Metrics which demonstrates how semantic retrieval can be paired with model-driven analysis for structured insights.
Disclaimer
This article is for informational and technical education only. It does not constitute investment advice, endorsements, or recommendations. Evaluate tools and data sources critically and consider legal and compliance requirements before deployment.
Recent Posts

Crypto Market Cools Off: What Is Token Metrics AI Saying Now
Introduction
The euphoria of April and May in the crypto market has officially hit the brakes. While traders were riding high just weeks ago, the mood has shifted — and the data confirms it. Token Metrics’ proprietary AI signals flipped bearish on May 30, and since then, the market has been slowly but steadily declining.
In this post, we break down what’s happened since the bearish signal, how major altcoins and sectors are reacting, and what Token Metrics’ indicators are telling us about what might come next.
The Big Picture: Cooling Off After a Hot Q1 and Q2 Start
The platform’s AI signal turned bearish on May 30 when the total crypto market cap hit $3.34 trillion. Since then, the momentum that defined early 2025 has reversed.
This wasn’t a sudden crash — it’s a slow bleed. The signal shift didn’t come from headline-driven panic, but from data-level exhaustion: volume softening, sentiment stalling, and trend strength fading across most tokens.
Token Metrics AI recognized the shift — and issued the warning.
What the Bearish Signal Means
The AI model analyzes over 80 metrics across price, volume, sentiment, and on-chain data. When key trends across these data sets weaken, the system flips from bullish (green) to bearish (red).
On May 30:
- Trader Grades across most tokens declined
- Signal sentiment flipped bearish
- Momentum and velocity cooled down
According to the model, these were signs of a broad de-risking cycle — not just isolated weakness.
Sectors Showing Declines
Even tokens that had been performing well throughout Q2 began to stall or roll over.
🚨 Launch Coin
Previously one of the top performers in April, Launch Coin saw its grades decrease and price action softened.It may even be rebranding — a typical signal that a project is pivoting after a hype cycle.
🏦 Real World Assets (RWAs)
RWAs were hot in March–May, but by early June, volume and signal quality had cooled off significantly.
🔐 ZK and L2s
Projects like Starknet and zkSync, once dominant in trader attention, have seen signal strength drop, with many now scoring below 70.
The cooling effect is broad, touching narratives, sectors, and high-performing individual tokens alike.
The Bull-Bear Indicator in Action
One of the key tools used by Token Metrics is the Bull vs. Bear Indicator, which aggregates bullish vs. bearish signals across all tokens tracked.
As of early June:
- The percentage of tokens with bullish signals dropped to its lowest since January.
- New projects launching with strong grades also saw a decline.
- Even community-favorite tokens began receiving “exit” alerts.
This isn’t fear — it’s fatigue.
How Traders Are Reacting
During the webinar, we noted that many users who rely on Token Metrics signals began rotating into stables once the May 30 signal flipped. Others reduced leverage, paused entries, or shifted into defensive plays like ETH and BTC.
This reflects an important philosophy:
"When the data changes, we change our approach."
Instead of trying to fight the tape or chase rebounds, disciplined traders are using the bearish signal to protect gains and preserve capital.
What About Ethereum and Bitcoin?
Even ETH and BTC, the two bellwether assets, aren’t immune.
- Ethereum: Lost momentum after a strong May push. Its Trader Grade is dropping, and the AI signals currently reflect neutral-to-bearish sentiment.
- Bitcoin: While still holding structure better than altcoins, it has also declined since peaking above $72k. Volume weakening and sentiment falling suggest caution.
In previous cycles, ETH and BTC acted as shelters during altcoin corrections. But now, even the majors show weakness — another reason why the bearish flip matters.
What Could Reverse This?
Abdullah Sarwar, head of research at Token Metrics, mentioned that for the signals to flip back bullish, we would need to see:
- Increased momentum across top tokens
- New narratives (e.g., real-world utility, cross-chain demand)
- Higher volume and liquidity inflows
- Positive macro or ETF news
Until then, the system will remain in defensive mode — prioritizing safety over chasing trades.
How to Act During a Bearish Signal
The team offered several tips for traders during this cooling-off period:
- Reduce exposure
Don’t hold full positions in assets with weak grades or bearish signals.
- Watch signal reversals
Keep an eye on sudden bullish flips with high Trader Grades — they often mark trend reversals.
- Rebalance into safer assets
BTC, ETH, or even stables allow you to sit on the sidelines while others take unnecessary risk. - Use Token Metrics filters
Use the platform to filter for:
- Top tokens with >80 grades
- Signals that flipped bullish in the last 3 days
- Low market-cap tokens with strong on-chain activity
- Top tokens with >80 grades
These tools help find exceptions in a weak market.
Conclusion: Bearish Doesn’t Mean Broken
Markets cycle — and AI sees it before headlines do.
Token Metrics' bearish signal wasn’t a call to panic. It was a calibrated, data-backed alert that the trend had shifted — and that it was time to switch from offense to defense.
If you’re navigating this new phase, listen to the data. Use the tools. And most importantly, avoid trading emotionally.
The bull market might return. When it does, Token Metrics AI will flip bullish again — and you’ll be ready.

Backtesting Token Metrics AI: Can AI Grades Really Predict Altcoin Breakouts?
To test the accuracy of Token Metrics' proprietary AI signals, we conducted a detailed six-month backtest across three different tokens — Fartcoin, Bittensor ($TAO), and Ethereum. Each represents a unique narrative: memecoins, AI infrastructure, and blue-chip Layer 1s. Our goal? To evaluate how well the AI’s bullish and bearish signals timed market trends and price action.
Fartcoin:
The green and red dots on the following Fartcoin price chart represent the bullish and bearish market signals, respectively. Since Nov 26, 2024, Token Metrics AI has given 4 trading signals for Fartcoin. Let’s analyze each signal separately.

The Fartcoin chart above displays green and red dots that mark bullish and bearish signals from the Token Metrics AI, respectively. Over the last six months — starting November 26, 2024 — our system produced four significant trade signals for Fartcoin. Let’s evaluate them one by one.
The first major signal was bullish on November 26, 2024, when Fartcoin was trading at $0.29. This signal preceded a massive run-up, with the price topping out at $2.49. That’s an astounding 758% gain — all captured within just under two months. It’s one of the most powerful validations of the AI model’s ability to anticipate momentum early.
Following that rally, a bearish signal was triggered on January 26, 2025, just before the market corrected. Fartcoin retraced sharply, plunging 74.76% from the highs. Traders who acted on this bearish alert could have avoided substantial drawdowns — or even profited through short-side exposure.
On March 25, 2025, the AI turned bullish again, as Fartcoin traded near $0.53. Over the next several weeks, the token surged to $1.58, a 198% rally. Again, the AI proved its ability to detect upward momentum early.
Most recently, on June 1, 2025, Token Metrics AI flipped bearish once again. The current Trader Grade of 24.34 reinforces this view. For now, the system warns of weakness in the memecoin market — a trend that appears to be playing out in real-time.
Across all four trades, the AI captured both the explosive upside and protected traders from steep corrections — a rare feat in the volatile world of meme tokens.

Bittensor
Next, we examine Bittensor, the native asset of the decentralized AI Layer 1 network. Over the last six months, Token Metrics AI produced five key signals — and the results were a mixed bag but still largely insightful.
In December 2024, the AI turned bearish around $510, which preceded a sharp decline to $314 by February — a 38.4% drawdown. This alert helped traders sidestep a brutal correction during a high-volatility period.
On February 21, 2025, the system flipped bullish, but this trade didn't play out as expected. The price dropped 25.4% after the signal. Interestingly, the AI reversed again with a bearish signal just five days later, showing how fast sentiment and momentum can shift in emerging narratives like AI tokens.
The third signal marked a solid win: Bittensor dropped from $327 to $182.9 following the bearish call — another 44% drop captured in advance.
In April 2025, momentum returned. The AI issued a bullish alert on April 19, with TAO at $281. By the end of May, the token had rallied to over $474, resulting in a 68.6% gain — one of the best performing bullish signals in the dataset.
On June 4, the latest red dot (bearish) appeared. The model anticipates another downward move — time will tell if it materializes, but the track record suggests caution is warranted.

Ethereum
Finally, we analyze the AI’s predictive power for Ethereum, the second-largest crypto by market cap. Over the six-month window, Token Metrics AI made three major calls — and each one captured critical pivots in ETH’s price.
On November 7, 2024, a green dot (bullish) appeared when ETH was priced at $2,880. The price then surged to $4,030 in less than 40 days, marking a 40% gain. For ETH, such a move is substantial and was well-timed.
By December 24, the AI flipped bearish with ETH trading at $3,490. This signal was perhaps the most important, as it came ahead of a major downturn. ETH eventually bottomed out near $1,540 in April 2025, avoiding a 55.8% drawdown for those who acted on the signal.
In May 2025, the AI signaled another bullish trend with ETH around $1,850. Since then, the asset rallied to $2,800, creating a 51% gain.
These three trades — two bullish and one bearish — show the AI’s potential in navigating large-cap assets during both hype cycles and corrections.Backtesting Token Metrics AI across memecoins, AI narratives, and Ethereum shows consistent results: early identification of breakouts, timely exit signals, and minimized risk exposure. While no model is perfect, the six-month history reveals a tool capable of delivering real value — especially when used alongside sound risk management.
Whether you’re a trader looking to time the next big altcoin rally or an investor managing downside in turbulent markets, Token Metrics AI signals — available via the fastest crypto API — offer a powerful edge.

Backtesting Token Metrics AI across memecoins, AI narratives, and Ethereum shows consistent results: early identification of breakouts, timely exit signals, and minimized risk exposure. While no model is perfect, the six-month history reveals a tool capable of delivering real value — especially when used alongside sound risk management.
Whether you’re a trader looking to time the next big altcoin rally or an investor managing downside in turbulent markets, Token Metrics AI signals — available via the fastest crypto API — offer a powerful edge.

Token Metrics API vs. CoinGecko API: Which Crypto API Should You Choose in 2025?
As the crypto ecosystem rapidly matures, developers, quant traders, and crypto-native startups are relying more than ever on high-quality APIs to build data-powered applications. Whether you're crafting a trading bot, developing a crypto research platform, or launching a GPT agent for market analysis, choosing the right API is critical.
Two names dominate the space in 2025: CoinGecko and Token Metrics. But while both offer access to market data, they serve fundamentally different purposes. CoinGecko is a trusted source for market-wide token listings and exchange metadata. Token Metrics, on the other hand, delivers AI-powered intelligence for predictive analytics and decision-making.
Let’s break down how they compare—and why the Token Metrics API is the superior choice for advanced, insight-driven builders.
🧠 AI Intelligence: Token Metrics Leads the Pack
At the core of Token Metrics is machine learning and natural language processing. It’s not just a data feed. It’s an AI that interprets the market.
Features exclusive to Token Metrics API:
- Trader Grade (0–100) – Short-term momentum score based on volume, volatility, and technicals
- Investor Grade (0–100) – Long-term asset quality score using fundamentals, community metrics, liquidity, and funding
- Bullish/Bearish AI Signals – Real-time alerts based on over 80 weighted indicators
- Sector-Based Smart Indices – Curated index sets grouped by theme (AI, DeFi, Gaming, RWA, etc.)
- Sentiment Scores – Derived from social and news data using NLP
- LLM-Friendly AI Reports – Structured, API-returned GPT summaries per token
- Conversational Agent Access – GPT-based assistant that queries the API using natural language
In contrast, CoinGecko is primarily a token and exchange aggregator. It offers static data: price, volume, market cap, supply, etc. It’s incredibly useful for basic info—but it lacks context or predictive modeling.
✅ Winner: Token Metrics — The only crypto API built for AI-native applications and intelligent automation.
🔍 Data Depth & Coverage
While CoinGecko covers more tokens and more exchanges, Token Metrics focuses on providing actionable insights rather than exhaustively listing everything.
Feature Token Metrics API CoinGecko API
Real-time + historical OHLCV ✅ ✅
Trader/Investor Grades ✅ AI-powered ❌
Exchange Aggregation ✅ (Used in indices, not exposed) ✅
Sentiment & Social Scoring ✅ NLP-driven ❌
AI Signals ✅ ❌
Token Fundamentals ✅ Summary via deepdive ⚠️ Limited
endpoint
NFT Market Data ❌ ✅
On-Chain Behavior ✅ Signals + Indices ⚠️ Pro-only (limited)
If you're building something analytics-heavy—especially trading or AI-driven—Token Metrics gives you depth, not just breadth.
✅ Verdict: CoinGecko wins on broad metadata coverage. Token Metrics wins on intelligence and strategic utility.
🛠 Developer Experience
One of the biggest barriers in Web3 is getting devs from “idea” to “prototype” without friction. Token Metrics makes that easy.
Token Metrics API Includes:
- SDKs for Python, Node.js, and Postman
- Quick-start guides and GitHub sample projects
- Integrated usage dashboard to track limits and history
- Conversational agent to explore data interactively
- Clear, logical endpoint structure across 21 data types
CoinGecko:
- Simple REST API
- JSON responses
- Minimal docs
- No SDKs
- No built-in tooling (must build from scratch)
✅ Winner: Token Metrics — Serious devs save hours with ready-to-go SDKs and utilities.
📊 Monitoring, Quotas & Support
CoinGecko Free Tier:
- 10–30 requests/min
- No API key needed
- Public endpoints
- No email support
- Rate limiting enforced via IP
Token Metrics Free Tier:
- 5,000 requests/month
- 1 request/min
- Full access to AI signals, grades, rankings
- Telegram & email support
- Upgrade paths to 20K–500K requests/month
While CoinGecko’s no-login access is beginner-friendly, Token Metrics offers far more power per call. With just a few queries, your app can determine which tokens are gaining momentum, which are losing steam, and how portfolios should be adjusted.
✅ Winner: Token Metrics — Better for sustained usage, scaling, and production reliability.
💸 Pricing & Value
Plan Feature CoinGecko Pro Token Metrics API
Entry Price ~$150/month $99/month
AI Grades & Signals ❌ ✅
Sentiment Analytics ❌ ✅
Sector Index Insights ❌ ✅
NLP Token Summaries ❌ ✅
Developer SDKs ❌ ✅
Token-Based Discounts ❌ ✅ (up to 35% with $TMAI)
For what you pay, Token Metrics delivers quant models and intelligent signal streams — not just raw price.
✅ Winner: Token Metrics — Cheaper entry, deeper value.
🧠 Use Cases Where Token Metrics API Shines
- Trading Bots
Use Trader Grade and Signal endpoints to enter/exit based on AI triggers. - GPT Agents
Generate conversational answers for “What’s the best AI token this week?” using structured summaries. - Crypto Dashboards
Power sortable, filtered token tables by grade, signal, or narrative. - Portfolio Rebalancers
Track real-time signals for tokens held, flag risk zones, and show sector exposure. - LLM Plugins
Build chat-based investment tools with explainability and score-based logic.
🧠 Final Verdict: CoinGecko for Info, Token Metrics for Intelligence
If you're building a crypto price tracker, NFT aggregator, or exchange overview site, CoinGecko is a solid foundation. It’s reliable, broad, and easy to get started.
But if your product needs to think, adapt, or help users make better decisions, then Token Metrics API is in another class entirely.
You're not just accessing data — you're integrating AI, machine learning, and predictive analytics into your app. That’s the difference between showing the market and understanding it.
🔗 Ready to Build Smarter?
- ✅ 5,000 free API calls/month
- 🤖 Trader & Investor Grades
- 📊 Live Bull/Bear signals
- 🧠 AI-powered summaries and GPT compatibility
- ⚡ 21 endpoints + Python/JS SDKs
.png)
Python Quick-Start with Token Metrics: The Ultimate Crypto Price API
If you’re a Python developer looking to build smarter crypto apps, bots, or dashboards, you need two things: reliable data and AI-powered insights. The Token Metrics API gives you both. In this tutorial, we’ll show you how to quickly get started using Token Metrics as your Python crypto price API, including how to authenticate, install the SDK, and run your first request in minutes.
Whether you’re pulling live market data, integrating Trader Grades into your trading strategy, or backtesting with OHLCV data, this guide has you covered.
🚀 Quick Setup for Developers in a Hurry
Install the official Token Metrics Python SDK:
pip install tokenmetrics
Or if you prefer working with requests directly, no problem. We’ll show both methods below.
🔑 Step 1: Generate Your API Key
Before anything else, you’ll need a Token Metrics account.
- Go to app.tokenmetrics.com/en/api
- Log in and navigate to the API Keys Dashboard
- Click Generate API Key
- Name your key (e.g., “Development”, “Production”)
- Copy it immediately — keep it secret.
You can monitor usage, rate limits, and quotas right from the dashboard. Track each key’s status, last used date, and revoke access at any time.
📈 Step 2: Retrieve Crypto Prices in Python
Here’s a simple example to fetch the latest price data for Ethereum (ETH):
import requests
API_KEY = "YOUR_API_KEY"
headers = {"x-api-key": API_KEY}
url = "https://api.tokenmetrics.com/v2/daily-ohlcv?symbol=ETH&startDate=<YYYY-MM-DD>&endDate=<YYYY-MM-DD>"
response = requests.get(url, headers=headers)
data = response.json()
for candle in data['data']:
print(f"Date: {candle['DATE']} | Close: ${candle['CLOSE']}")
You now have a working python crypto price API pipeline. Customize startDate or endDate to get specific range of historical data.
📊 Add AI-Powered Trader Grades
Token Metrics’ secret sauce is its AI-driven token ratings. Here’s how to access Trader Grades for ETH:
grade_url = "https://api.tokenmetrics.com/v2/trader-grades?symbol=ETH&limit=30d"
grades = requests.get(grade_url, headers=headers).json()['data']
for day in grades:
print(f"{day['DATE']} — Trader Grade: {day['TA_GRADE']}")
Use this data to automate trading logic (e.g., enter trades when Grade > 85) or overlay on charts.
🔁 Combine Data for Backtesting
Want to test a strategy? Merge OHLCV and Trader Grades for any token:
import pandas as pd
ohlcv_df = pd.DataFrame(data['data'])
grades_df = pd.DataFrame(grades)
combined_df = pd.merge(ohlcv_df, grades_df, on="DATE")
print(combined_df.head())
Now you can run simulations, build analytics dashboards, or train your own models.
⚙️ Endpoint Coverage for Python Devs
- /daily-ohlcv: Historical price data
- /trader-grades: AI signal grades (0–100)
- /trading-signals: Bullish/Bearish signals for short and long positions.
- /sentiment: AI-modeled sentiment scores
- /tmai: Ask questions in plain English
All endpoints return structured JSON and can be queried via requests, axios, or any modern client.
🧠 Developer Tips
- Each request = 1 credit (tracked in real time)
- Rate limits depend on your plan (Free = 1 req/min)
- Use the API Usage Dashboard to monitor and optimize
- Free plan = 5,000 calls/month — perfect for testing and building MVPs
💸 Bonus: Save 35% with $TMAI
You can reduce your API bill by up to 35% by staking and paying with Token Metrics’ native token, $TMAI. Available via the settings → payments page.
🌐 Final Thoughts
If you're searching for the best python crypto price API with more than just price data, Token Metrics is the ultimate choice. It combines market data with proprietary AI intelligence, trader/investor grades, sentiment scores, and backtest-ready endpoints—all in one platform.
✅ Real-time & historical data
✅ RESTful endpoints
✅ Python-ready SDKs and docs
✅ Free plan to start building today
Start building today → tokenmetrics.com/api
Looking for SDK docs? Explore the full Python Quick Start Guide

Crypto API to Google Sheets in 5 Minutes: How to Use Token Metrics API with Apps Script
If you're a trader, data analyst, or crypto enthusiast, chances are you've wanted to pull live crypto data directly into Google Sheets. Whether you're tracking prices, building custom dashboards, or backtesting strategies, having real-time data at your fingertips can give you an edge.
In this guide, we'll show you how to integrate the Token Metrics API — a powerful crypto API with free access to AI-powered signals — directly into Google Sheets in under 5 minutes using Google Apps Script.
📌 Why Use Google Sheets for Crypto Data?
Google Sheets is a flexible, cloud-based spreadsheet that:
- Requires no coding to visualize data
- Can be shared and updated in real time
- Offers formulas, charts, and conditional formatting
- Supports live API connections with Apps Script
When combined with the Token Metrics API, it becomes a powerful dashboard that updates live with Trader Grades, Bull/Bear Signals, historical OHLCV data, and more.
🚀 What Is Token Metrics API?
The Token Metrics API provides real-time and historical crypto data powered by AI. It includes:
- Trader Grade: A score from 0 to 100 showing bullish/bearish potential
- Bull/Bear Signal: A binary signal showing market direction
- OHLCV: Open-High-Low-Close-Volume price history
- Token Metadata: Symbol, name, category, market cap, and more
The best part? The free Basic Plan includes:
- 5,000 API calls/month
- Access to core endpoints
- Hourly data refresh
- No credit card required
🛠️ What You’ll Need
- A free Token Metrics API key
- A Google account
- Basic familiarity with Google Sheets
⚙️ How to Connect Token Metrics API to Google Sheets
Here’s how to get live AI-powered crypto data into Sheets using Google Apps Script.
🔑 Step 1: Generate Your API Key
- Visit: https://app.tokenmetrics.com/en/api
- Click “Generate API Key”
- Copy it — you’ll use this in the script
📄 Step 2: Create a New Google Sheet
- Go to Google Sheets
- Create a new spreadsheet
- Click Extensions > Apps Script
💻 Step 3: Paste This Apps Script
const TOKEN_METRICS_API_KEY = 'YOUR_API_KEY_HERE';
async function getTraderGrade(symbol) {
const url = `https://api.tokenmetrics.com/v2/trader-grades?symbol=${symbol.toUpperCase()}`;
const options = {
method: 'GET',
contentType: 'application/json',
headers: {
'accept': 'application/json',
'x-api-key': TOKEN_METRICS_API_KEY,
},
muteHttpExceptions: true
};
const response = UrlFetchApp.fetch(url, options);
const data = JSON.parse(response.getContentText() || "{}")
if (data.success && data.data.length) {
const coin = data.data[0];
return [
coin.TOKEN_NAME,
coin.TOKEN_SYMBOL,
coin.TA_GRADE,
coin.DATE
];
} else {
return ['No data', '-', '-', '-'];
}
}
async function getSheetData() {
const sheet = SpreadsheetApp.getActiveSpreadsheet().getActiveSheet();
const symbols = sheet.getRange('A2:A').getValues().flat().filter(Boolean);
const results = [];
results.push(['Name', 'Symbol', 'Trader Grade', 'Date']);
for (const symbol of symbols) {
if (symbol) {
const row = await getTraderGrade(symbol);
results.push(row);
}
}
sheet.getRange(2, 2, results.length, results[0].length).setValues(results);
}
🧪 Step 4: Run the Script
- Replace 'YOUR_API_KEY_HERE' with your real API key.
- Save the project as TokenMetricsCryptoAPI.
- In your sheet, enter a list of symbols (e.g., BTC, ETH, SOL) in Column A.
- Go to the script editor and run getSheetData() from the dropdown menu.
Note: The first time, Google will ask for permission to access the script.
✅ Step 5: View Your Live Data
After the script runs, you’ll see:
- Coin name and symbol
- Trader Grade (0–100)
- Timestamp
You can now:
- Sort by Trader Grade
- Add charts and pivot tables
- Schedule automatic updates with triggers (e.g., every hour)
🧠 Why Token Metrics API Is Ideal for Google Sheets Users
Unlike basic price APIs, Token Metrics offers AI-driven metrics that help you:
- Anticipate price action before it happens
- Build signal-based dashboards or alerts
- Validate strategies against historical signals
- Keep your data fresh with hourly updates
And all of this starts for free.
🏗️ Next Steps: Expand Your Sheet
Here’s what else you can build:
- A portfolio tracker that pulls your top coins’ grades
- A sentiment dashboard using historical OHLCV
- A custom screener that filters coins by Trader Grade > 80
- A Telegram alert system triggered by Sheets + Apps Script + Webhooks
You can also upgrade to the Advanced Plan to unlock 21 endpoints including:
- Investor Grades
- Smart Indices
- Sentiment Metrics
- Quantitative AI reports
- 60x API speed
🔐 Security Tip
Never share your API key in a public Google Sheet. Use script-level access and keep the sheet private unless required.
🧩 How-To Schema Markup (for SEO)
{
"@context": "https://schema.org",
"@type": "HowTo",
"name": "Crypto API to Google Sheets in 5 Minutes",
"description": "Learn how to connect the Token Metrics crypto API to Google Sheets using Google Apps Script and get real-time AI-powered signals and prices.",
"totalTime": "PT5M",
"supply": [
{
"@type": "HowToSupply",
"name": "Google Sheets"
},
{
"@type": "HowToSupply",
"name": "Token Metrics API Key"
}
],
"tool": [
{
"@type": "HowToTool",
"name": "Google Apps Script"
}
],
"step": [
{
"@type": "HowToStep",
"name": "Get Your API Key",
"text": "Sign up at Token Metrics and generate your API key from the API dashboard."
},
{
"@type": "HowToStep",
"name": "Create a New Google Sheet",
"text": "Open a new sheet and list crypto symbols in column A."
},
{
"@type": "HowToStep",
"name": "Add Apps Script",
"text": "Go to Extensions > Apps Script and paste the provided code, replacing your API key."
},
{
"@type": "HowToStep",
"name": "Run the Script",
"text": "Execute the getSheetData function to pull data into the sheet."
}
]
}
✍️ Final Thoughts
If you're serious about crypto trading or app development, integrating live market signals into your workflow can be a game-changer. With the Token Metrics API, you can get institutional-grade AI signals — right inside Google Sheets.
This setup is simple, fast, and completely free to start. Try it today and unlock a smarter way to trade and build in crypto.
.png)
🚀Put Your $TMAI to Work: Daily Rewards, No Locks, Up To 200% APR.
Liquidity farming just got a major upgrade. Token Metrics AI ($TMAI) has launched its first liquidity incentive campaign on Merk — and it’s designed for yield hunters looking to earn fast, with no lockups, no gimmicks, and real rewards from Day 1.
📅 Campaign Details
- Duration: June 5 – June 19, 2025
- Rewards Begin: 17:00 UTC / 1:00 PM ET
- Total TMAI Committed: 38 million+ $TMAI
- No Lockups: Enter or exit at any time
- APR Potential: Up to 200%
For two weeks, liquidity providers can earn high daily rewards across three different pools. All rewards are paid in $TMAI and distributed continuously — block by block — through the Merkl platform.
💧 Where to Earn – The Pools (as of June 5, 17:00 UTC)
Pool Starting APR % Total Rewards (14 days) Current TVL
Aerodrome WETH–TMAI 150% 16.79M TMAI (~$11,000) $86,400
Uniswap v3 USDC–TMAI 200% 14.92M TMAI (~$9,800) $19,900
Balancer 95/5 WETH–TMAI 200% 5.60M TMAI (~$3,700) $9,500
These pools are live and actively paying rewards. APR rates aren’t displayed on Merkl until the first 24 hours of data are available — but early providers will already be earning.
🧠 Why This Campaign Stands Out
1. Turbo Rewards for a Short Time
This isn’t a slow-drip farm. The TMAI Merkl campaign is designed to reward action-takers. For the first few days, yields are especially high — thanks to low TVL and full daily reward distribution.
2. No Lockups or Waiting Periods
You can provide liquidity and withdraw it anytime — even the same day. There are no lockups, no vesting, and no delayed payout mechanics. All rewards accrue automatically and are claimable through Merkl.
3. Choose Your Risk Profile
You get to pick your exposure.
- Want ETH upside? Stake in Aerodrome or Balancer.
- Prefer stablecoin stability? Go with the Uniswap v3 USDC–TMAI pool.
4. Influence the Future of TMAI Yield Farming
This campaign isn’t just about yield — it’s a test. If enough users participate and volume grows, the Token Metrics Treasury will consider extending liquidity rewards into Q3 and beyond. That means more TMAI emissions, longer timelines, and consistent passive income opportunities for LPs.
5. Built for Transparency and Speed
Rewards are distributed via Merkl by Angle Labs, a transparent, gas-efficient platform for programmable liquidity mining. You can see the exact rewards, TVL, wallet counts, and pool analytics at any time.
🔧 How to Get Started
Getting started is simple. You only need a crypto wallet, some $TMAI, and a matching asset (either WETH or USDC, depending on the pool).
Step-by-step:
- Pick a pool:
Choose from Aerodrome, Uniswap v3, or Balancer depending on your risk appetite and asset preference. - Provide liquidity:
Head to the Merkl link for your pool, deposit both assets, and your position is live immediately. - Track your earnings:
Watch TMAI accumulate daily in your Merkl dashboard. You can claim rewards at any time. - Withdraw when you want:
Since there are no lockups, you can remove your liquidity whenever you choose — rewards stop the moment liquidity is pulled.
🎯 Final Thoughts
This is a rare opportunity to earn serious rewards in a short amount of time. Whether you’re new to liquidity mining or a DeFi veteran, the TMAI Merkl campaign is built for speed, flexibility, and transparency.
You’re still early. The best yields happen in the first days, before TVL rises and APR stabilizes. Dive in now and maximize your returns while the turbo phase is still on.
👉 Join the Pools and Start Earning

Token Metrics API Joins RapidAPI: The Fastest Way to Add AI-Grade Crypto Data to Your App
The hunt for a dependable Crypto API normally ends in a graveyard of half-maintained GitHub repos, flaky RPC endpoints, and expensive enterprise feeds that hide the true cost behind a sales call. Developers waste days wiring those sources together, only to learn that one fails during a market spike or that data schemas never quite align. The result? Bots mis-fire, dashboards drift out of sync, and growth stalls while engineers chase yet another “price feed.”
That headache stops today. Token Metrics API, the same engine that powers more than 70 000 users on the Token Metrics analytics platform, is now live on RapidAPI—the largest marketplace of public APIs with more than four million developers. One search, one click, and you get an AI-grade Crypto API with institutional reliability and a 99.99 % uptime SLA.
Why RapidAPI + Token Metrics API Matters
- Native developer workflow – No separate billing portal, OAuth flow, or SDK hunt. Click “Subscribe,” pick the Free plan, and RapidAPI instantly generates a key.
- Single playground – Run test calls in-browser and copy snippets in cURL, Python, Node, Go, or Rust without leaving the listing.
- Auto-scale billing – When usage grows, RapidAPI handles metering and invoices. You focus on product, not procurement.
What Makes the Token Metrics Crypto API Different?
- Twenty-one production endpoints
Live & historical prices, hourly and daily OHLCV, proprietary Trader & Investor Grades, on-chain and social sentiment, AI-curated sector indices, plus deep-dive AI reports that summarise fundamentals, code health, and tokenomics. - AI signals that win
Over the last 24 months, more than 70 % of our bull/bear signals outperformed simple buy-and-hold. The API delivers that same alpha in flat JSON. - Institutional reliability
99.99 % uptime, public status page, and automatic caching for hot endpoints keep latency low even on volatile days.
Three-Step Quick Start
- Search “Token Metrics API” on RapidAPI and click Subscribe.
- Select the Free plan (5 000 calls / month, 20 request / min) and copy your key.
- Test:
bash
CopyEdit
curl -H "X-RapidAPI-Key: YOUR_KEY" \
-H "X-RapidAPI-Host: tokenmetrics.p.rapidapi.com" \
https://tokenmetrics.p.rapidapi.com/v2/trader-grades?symbol=BTC
The response returns Bitcoin’s live Trader Grade (0-100) and bull/bear flag. Swap BTC for any asset or explore /indices, /sentiment, and /ai-reports.
Real-World Use Cases
Use case
How developers apply the Token Metrics API
Automated trading bots
Rotate allocations when Trader Grade > 85 or sentiment flips bear.
Portfolio dashboards
Pull index weights, grades, and live prices in a single call for instant UI load.
Research terminals
Inject AI Reports into Notion/Airtable for analyst workflows.
No-code apps
Combine Zapier webhooks with RapidAPI to display live sentiment without code.
Early adopters report 30 % faster build times because they no longer reconcile five data feeds.
Pricing That Scales
- Free – 5 000 calls, 30-day history.
- Advanced – 20 000 calls, 3-month history.
- Premium – 100 000 calls, 3-year history.
- VIP – 500 000 calls, unlimited history.
Overages start at $0.005 per call.
Ready to Build?
• RapidAPI listing: https://rapidapi.com/tm-ai/api/token-metrics
https://rapidapi.com/token-metrics-token-metrics-default/api/token-metrics-api1
• Developer docs: https://developers.tokenmetrics.com
• Support Slack: https://join.slack.com/t/tokenmetrics-devs/shared_invite/…
Spin up your key, ship your bot, and let us know what you create—top projects earn API credits and a Twitter shout-out.

Crypto MCP Server: Token Metrics Brings One-Key Data to OpenAI, Claude, Cursor & Windsurf
The modern crypto stack is a jungle of AI agents: IDE copilots that finish code, desktop assistants that summarise white-papers, CLI tools that back-test strategies, and slide generators that turn metrics into pitch decks. Each tool speaks a different protocol, so developers juggle multiple keys and mismatched JSON every time they query a Crypto API. That fragmentation slows innovation and creates silent data drift.
To fix it, we built the Token Metrics Crypto MCP Server—a lightweight gateway that unifies every tool around a single Multi-Client Crypto API. MCP (Multi-Client Protocol) sits in front of the Token Metrics API and translates requests into one canonical schema. Paste your key once, and a growing suite of clients speaks the same crypto language:
- OpenAI Agents SDK – build ChatGPT-style agents with live grades
- Claude Desktop – natural-language research powered by real-time metrics
- Cursor / Windsurf IDE – in-editor instant queries
- Raycast, Tome, VS Code, Cline and more
Why a Crypto MCP Server Beats Separate APIs
Consistency – Claude’s grade equals Windsurf’s grade.
One-time auth – store one key; clients handle headers automatically.
Faster prototyping – build in Cursor, test in Windsurf, present in Tome without rewriting queries.
Lower cost – shared quota plus $TMAI discount across all tools.
Getting Started
- Sign up for the Free plan (5 000 calls/month) and get your key: https://app.tokenmetrics.com/en/api
- Click the client you want to setup mcp for: smithery.ai/server/@token-metrics/mcp or https://modelcontextprotocol.io/clients
Your LLM assistant, IDE, CLI, and slide deck now share a single, reliable crypto brain. Copy your key, point to MCP, and start building the next generation of autonomous finance.
How Teams Use the Multi-Client Crypto API
- Research to Execution – Analysts ask Claude for “Top 5 DeFi tokens with improving Trader Grades.” Cursor fetches code snippets; Windsurf trades the shortlist—all on identical data.
- DevRel Demos – Share a single GitHub repo with instructions for Cursor, VS Code, and CLI; workshop attendees choose their favorite environment and still hit the same endpoints.
- Compliance Dashboards – Tome auto-refreshes index allocations every morning, ensuring slide decks stay current without manual updates
Pricing, Rate Limits, and $TMAI
The Crypto MCP Server follows the core Token Metrics API plans: Free, Advanced, Premium, and VIP up to 500 000 calls/month and 600 req/min. Paying or staking $TMAI applies the familiar 10 % pay-in bonus plus up to 25 % staking rebate—35 % total savings. No new SKU, no hidden fee.
Build Once, Query Everywhere
The Token Metrics Crypto MCP Server turns seven scattered tools into one cohesive development environment. Your LLM assistant, IDE, CLI, and slideshow app now read from the same real-time ledger. Copy your key, point to MCP, and start building the next generation of autonomous finance.
• Github repo: https://github.com/token-metrics/mcp
👉 Ready to build? Grab your key from https://app.tokenmetrics.com/en/api
👉 Join Token Metrics API Telegram group
Step-by-step client guides at smithery.ai/server/@token-metrics/mcp or https://modelcontextprotocol.io/clients — everything you need to wire Token Metrics MCP into Open AI, Claude, Cursor, Windsurf and more.

Unlock Smarter Trades: Explore the All-New Token Metrics Market Page for Crypto Signal Discovery
In the fast-paced world of crypto trading, timing is everything. One small delay can mean missing out on a breakout — or getting caught in a dump. That’s why we’ve completely redesigned the Token Metrics Market Page for 2025, bringing users faster access to the most accurate crypto trading signals powered by AI, on-chain analysis, and proprietary data science models.
This isn’t just a design refresh. It’s a full rethinking of how traders interact with data — with one goal in mind: make smarter trades faster.
Why Interface Matters in 2025’s Data-Driven Crypto Market
Crypto has matured. In 2025, the market is no longer driven by just hype or tweets. The best traders are using quantitative tools, AI signals, and real-time on-chain intelligence to stay ahead. And the Token Metrics Market Page is now built to meet that standard.
Gone are the days of switching between ten different platforms to get a complete view of a token. With the new Market Page, everything you need to make a data-backed trading decision is at your fingertips — no noise, no fluff, just high-signal information.
What’s New: Market Page Features That Give You an Edge
🔥 High-Performing Signals Front and Center
At the top of the redesigned Market Page, we’ve surfaced the week’s most compelling bullish and bearish crypto signals. These aren’t just based on price action — they’re curated using a powerful blend of AI, technical analysis, momentum trends, and on-chain activity.
Take Launch Coin week. It’s been topping the bullish charts due to a sharp uptick in volume and social traction — even though the price has begun to stabilize. Our platform caught the early signal, helping users ride the wave before it showed up on mainstream crypto news feeds.
Every token featured here has passed through our proprietary signal engine, which incorporates:
- Token Metrics Trader Grade (short-term technical outlook)
- Investor Grade (longer-term fundamentals)
- Volume & Liquidity metrics
- Community sentiment and social velocity
- Exchange and VC backing
The result? You don’t just know what’s pumping — you know why it’s moving, and whether it’s likely to hold.
🧠 Smarter Filtering and Custom Dashboards
Want to isolate tokens in the DeFi space? Looking for only high-grade bullish signals on Ethereum or Solana? With new filtering options by sector, signal strength, and chain, you can zero in on the exact types of trades you're looking for — whether you're a casual trader or running a portfolio strategy.
This personalized dashboard experience brings hedge-fund-grade analytics to your fingertips, democratizing access to sophisticated data tools for retail and pro traders alike.
📉 Data Visuals at a Glance
Every token card on the Market Page now comes with a visual snapshot showing:
- Recent price movement
- Momentum trends
- Short-term vs. long-term grades
- Signal performance over time
No need to deep-dive into separate pages unless you want to — Token Metrics puts quick visual context right where you need it to reduce friction and increase speed.
📱 Mobile-Optimized for Trading on the Go
We know many users monitor the market and execute trades from their phone. That’s why we’ve ensured the entire Market Page is fully mobile-responsive, optimized for fast swipes, taps, and decisions without losing any key insights.
With Token Metrics, your next trade idea can start while you’re commuting, grabbing coffee, or even mid-conversation at a crypto meetup.
The Token Metrics Advantage: AI-Powered Crypto Trading in Real-Time
This redesign is just one piece of the broader Token Metrics vision — making AI-driven crypto trading accessible to everyone.
If you’re serious about catching the next 10x altcoin, surviving market crashes, or just improving your signal-to-noise ratio, here’s why thousands of crypto traders choose Token Metrics:
- ✅ Real-time trading signals for 6,000+ tokens
- ✅ AI-generated Trader and Investor Grades
- ✅ Market signals backed by 80+ data points
- ✅ Daily updates from our deep-dive research AI
- ✅ Integrated with self-custody workflows
- ✅ Trusted by analysts, devs, and hedge funds
Our users aren’t just following the market — they’re leading it.
Use Case: How Traders Are Winning with Token Metrics
One of our users recently shared how they caught a 47% pump on an obscure DePIN token by acting on a Buy Signal that showed up in the Market Page’s Bullish section three days before the breakout. The token had minimal social chatter at the time, but our models flagged rising volume, strong fundamentals, and a breakout formation building on the technical side.
Stories like this are becoming common. With every new feature and dataset added to Token Metrics, users are getting smarter, faster, and more confident in their crypto trades.
What’s Next for the Market Page
This is just the beginning. Coming soon to the Market Page:
- 💡 Auto-alerts based on your saved filters
- 📊 Historical signal performance analytics
- 🛠️ Integrations with our API for power users
- 🧵 Narrative filters based on trending themes (AI, DeFi, Memes, RWA, etc.)
We’re building the most intelligent crypto trading assistant on the web — and the new Market Page is your window into it.
Final Thoughts: Don’t Just React — Predict
In crypto, being early is everything. But with thousands of tokens and hundreds of narratives, knowing where to look can be overwhelming.
The redesigned Token Metrics Market Page removes the guesswork.
By giving you AI-powered insights, real-time signals, and actionable visualizations, it transforms your screen into a decision-making engine. Whether you’re day trading or managing a long-term altcoin portfolio, the right data — surfaced the right way — gives you the edge you need.
Visit the new Market Page today, and see why 2025’s smartest crypto traders are making Token Metrics their go-to tool for navigating this volatile, opportunity-packed market.
Ready to Trade Smarter?
Explore the new Market Page
Want the signal before the crowd?
Try Token Metrics free and get instant access to:
- AI Signals
- Investor and Trader Grades
- Market Timing Tools
- Bullish and Bearish Alerts
Because in crypto, data is the new alpha — and Token Metrics helps you unlock it.
Featured Posts
NFT's Blogs
Crypto Basics Blog
Research Blogs
Announcement Blogs



9450 SW Gemini Dr
PMB 59348
Beaverton, Oregon 97008-7105 US
No Credit Card Required

Online Payment
SSL Encrypted
.png)
Products
Subscribe to Newsletter
Token Metrics Media LLC is a regular publication of information, analysis, and commentary focused especially on blockchain technology and business, cryptocurrency, blockchain-based tokens, market trends, and trading strategies.
Token Metrics Media LLC does not provide individually tailored investment advice and does not take a subscriber’s or anyone’s personal circumstances into consideration when discussing investments; nor is Token Metrics Advisers LLC registered as an investment adviser or broker-dealer in any jurisdiction.
Information contained herein is not an offer or solicitation to buy, hold, or sell any security. The Token Metrics team has advised and invested in many blockchain companies. A complete list of their advisory roles and current holdings can be viewed here: https://tokenmetrics.com/disclosures.html/
Token Metrics Media LLC relies on information from various sources believed to be reliable, including clients and third parties, but cannot guarantee the accuracy and completeness of that information. Additionally, Token Metrics Media LLC does not provide tax advice, and investors are encouraged to consult with their personal tax advisors.
All investing involves risk, including the possible loss of money you invest, and past performance does not guarantee future performance. Ratings and price predictions are provided for informational and illustrative purposes, and may not reflect actual future performance.