Text Link
Text Link
Text Link
Text Link
Text Link
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Stop Guessing, Start Trading: The Token Metrics API Advantage

Announcements

Big news: We’re cranking up the heat on AI-driven crypto analytics with the launch of the Token Metrics API and our official SDK (Software Development Kit). This isn’t just an upgrade – it's a quantum leap, giving traders, hedge funds, developers, and institutions direct access to cutting-edge market intelligence, trading signals, and predictive analytics.

Crypto markets move fast, and having real-time, AI-powered insights can be the difference between catching the next big trend or getting left behind. Until now, traders and quants have been wrestling with scattered data, delayed reporting, and a lack of truly predictive analytics. Not anymore.

The Token Metrics API delivers 32+ high-performance endpoints packed with powerful AI-driven insights right into your lap, including:

  • Trading Signals: AI-driven buy/sell recommendations based on real-time market conditions.
  • Investor & Trader Grades: Our proprietary risk-adjusted scoring for assessing crypto assets.
  • Price Predictions: Machine learning-powered forecasts for multiple time frames.
  • Sentiment Analysis: Aggregated insights from social media, news, and market data.
  • Market Indicators: Advanced metrics, including correlation analysis, volatility trends, and macro-level market insights.

Getting started with the Token Metrics API is simple:

  1. Sign up at www.tokenmetrics.com/api
  2. Generate an API key and explore sample requests.
  3. Choose a tier–start with 50 free API calls/month, or stake TMAI tokens for premium access.
  4. Optionally–download the SDK, install it for your preferred programming language, and follow the provided setup guide.

At Token Metrics, we believe data should be decentralized, predictive, and actionable. 

The Token Metrics API & SDK bring next-gen AI-powered crypto intelligence to anyone looking to trade smarter, build better, and stay ahead of the curve. With our official SDK, developers can plug these insights into their own trading bots, dashboards, and research tools – no need to reinvent the wheel.

Research

Understanding APIs: A Practical Guide

Token Metrics Team
6
MIN

APIs power modern software by letting systems communicate without sharing internal code. Whether you use a weather app, social login, or an AI assistant, APIs are the invisible glue connecting services. This guide explains what an API is, how APIs work, practical use cases (including crypto and AI), and criteria to evaluate an API for research or product use.

What is an API? A clear definition

API stands for Application Programming Interface. At its simplest, an API is a set of rules and protocols that lets one program request services or data from another. Think of an API as a restaurant menu: the menu lists dishes (endpoints) you can order (requests), the kitchen prepares the dish (service), and the waiter delivers it to your table (response). The consumer of the API doesn’t see how the kitchen is organized; it only needs to know how to order.

APIs abstract complexity, standardize interactions, and enable modular design. They exist at many layers — from operating systems and libraries to web services that return JSON or XML. For developers and researchers, APIs are indispensable for integrating external data, automating workflows, and composing distributed systems.

How APIs work: architecture, formats, and types

Most modern web APIs follow request/response patterns over HTTP. Key concepts include:

  • Endpoints: URL paths that expose specific resources or actions, e.g., /prices or /users.
  • Methods: HTTP verbs like GET (retrieve), POST (create), PUT/PATCH (update), DELETE (remove).
  • Payloads: Data sent or received, often formatted as JSON for web APIs.
  • Authentication: API keys, OAuth tokens, or signed requests to control access.

Architectural styles and protocols include REST (resource-oriented, stateless), GraphQL (client-specified queries), gRPC (binary, streaming), and WebSockets (persistent full-duplex connections). Each has trade-offs: REST is simple and cache-friendly; GraphQL reduces over-fetching but can complicate caching; gRPC excels in performance for internal microservices.

APIs in crypto and AI: data, execution, and agents

In crypto and AI ecosystems, APIs serve several roles:

  • Market data APIs: Provide price feeds, order book snapshots, historical candles, and index data used for analysis and visualization.
  • Blockchain & on-chain APIs: Expose transaction data, smart contract interactions, wallet balances, and event logs for on-chain analysis.
  • Execution/trading APIs: Let platforms submit orders, query trade status, and manage accounts. These require strict auth and latency considerations.
  • AI & model APIs: Offer inference services, embeddings, or model orchestration endpoints for tasks like NLP, classification, or agent behavior.

Combining these APIs enables product capabilities such as automated research pipelines, AI agents that react to market signals, and dashboards that mix on-chain metrics with model-driven insights. Many teams use dedicated crypto APIs to aggregate exchange and chain data, and AI-driven tools to surface patterns without exposing trading recommendations.

For example, researchers might ingest price and on-chain feeds through a market API, compute custom signals with an AI model, and expose those signals via an internal API for front-end consumption. When evaluating providers, consider freshness of data, coverage across assets/chains, and documented latency characteristics.

How to evaluate, integrate, and maintain APIs

Choosing and integrating an API is not just about endpoints. Use a checklist that covers technical, operational, and governance concerns:

  1. Documentation quality: Look for clear examples, error codes, and sandbox endpoints for testing.
  2. Authentication and security: Prefer APIs that support scoped keys, granular permissions, and strong transport security (TLS).
  3. Rate limits & pricing: Understand request quotas, burst limits, and throttling behavior to design backoff strategies.
  4. Data guarantees: Check latency, update frequency, historical depth, and whether data is normalized across sources.
  5. SLA and reliability: Uptime history, status pages, and support SLAs matter for production use.
  6. Monitoring & observability: Log requests, track error rates, and monitor latency to detect regressions or abuse.

Integration tips: start with a sandbox key, write thin adapters to isolate provider-specific formats, and implement exponential backoff with jitter for retries. For analytics workflows, cache immutable historical responses and only refresh dynamic endpoints when necessary.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: common questions about APIs

What is the difference between REST and GraphQL?

REST exposes resources through fixed endpoints and relies on HTTP methods. GraphQL lets clients specify exactly what fields they need in a single query. REST is simpler and benefits from existing HTTP caching; GraphQL reduces over-fetching but can require more complex server-side tooling.

How do API keys and OAuth differ?

API keys are simple tokens issued to clients, often for server-to-server access or basic identification. OAuth is an authorization framework that issues scoped access tokens on behalf of users, enabling delegated permissions and better control over access lifecycle.

What are common API failure modes to plan for?

Rate limiting, transient network errors, schema changes, and authentication failures are typical. Design clients to retry with exponential backoff, validate responses, and fail gracefully when dependencies are degraded.

How can I secure sensitive data when using third-party APIs?

Use encrypted transport (TLS), rotate credentials regularly, scope keys to minimum permissions, and avoid embedding secrets in client-side code. For sensitive workflows, consider a server-side proxy that enforces access policies and masking.

Can AI models be accessed via APIs and how does that affect workflows?

Yes. Many AI models expose inference and embedding endpoints. Using model APIs decouples compute from your product stack, simplifies scaling, and enables A/B testing of models. Evaluate latency, cost per request, and data retention policies when choosing a provider.

How do I test and validate an API integration?

Start in a sandbox environment, create automated integration tests covering success and failure cases, mock third-party responses for unit tests, and run load tests against rate limits. Monitor post-deployment with health checks and alerts.

What are rate limits and how should clients handle them?

Rate limits cap how many requests a client can make in a time window. Clients should respect headers that indicate remaining quota, implement exponential backoff with jitter on 429 responses, and batch requests or cache results when possible.

When should I build my own API versus using a third-party API?

Use a third-party API for non-core data or services where speed-to-market and maintenance offload matter. Build an internal API when the capability is strategic, requires proprietary processing, or when you need tight control over latency, privacy, and SLAs.

How can tools like Token Metrics help with API-driven research?

Data and model platforms can centralize feeds, normalize formats, and provide analytical signals that reduce the engineering overhead of assembling multiple APIs. Token Metrics is an example of a platform that merges model-driven insights with market and on-chain data for research workflows.

Disclaimer

This content is for educational and informational purposes only. It does not constitute financial, legal, or investment advice. Evaluate APIs and services independently and consult appropriate professionals for decisions that involve risk.

Research

APIs Explained: How They Power Apps and AI

Token Metrics Team
6
MIN

APIs are the invisible connectors that let software talk to software. Whether you book a flight, check a crypto price, or ask an AI agent to summarize a document, APIs are likely working behind the scenes. This guide breaks down what an API is, how it works, common types and use cases, and practical steps for research and integration.

What is an API?

An API, or application programming interface, is a defined set of rules and data structures that lets one software component request services or data from another. Think of an API as a contract: the provider exposes endpoints and data formats, and the consumer uses those endpoints to perform actions or retrieve information. This abstraction hides implementation details, enabling interoperability and composability across systems.

At its core, an API specifies:

  • Available operations (endpoints) and accepted parameters
  • Request and response formats (JSON, XML, etc.)
  • Authentication and rate limits
  • Error handling and status codes

APIs accelerate development by allowing teams to reuse services instead of rebuilding functionality. They also enable ecosystems: marketplaces, integrations, and data sharing across organizations.

How APIs Work: Components & Protocols

APIs are implemented over protocols and architectural styles. The most common is REST (Representational State Transfer), which uses HTTP verbs (GET, POST, PUT, DELETE) and URIs to model resources. Alternatives like GraphQL let clients request specific data shapes, which can reduce over- and under-fetching in complex applications.

Key components to understand:

  • Endpoint: A URL representing a resource or action (e.g., /api/v1/prices).
  • Method: The HTTP action to perform (GET to read, POST to create).
  • Payload: The body of a request for create/update operations, usually JSON.
  • Authentication: API keys, OAuth tokens, or other schemes control access.
  • Rate limits: Providers throttle requests to protect services.

Beyond REST and GraphQL, there are webhooks (server-to-server push notifications), gRPC for high-performance RPC-style communication, and socket-based APIs for real-time streams. The choice of protocol affects latency, throughput, and developer ergonomics.

Types of APIs and Real-World Use Cases

APIs come in several flavors depending on visibility and purpose:

  • Public APIs: Exposed to external developers for integrations and apps.
  • Private APIs: Internal to an organization, used to modularize services.
  • Partner APIs: Shared with selected partners under specific agreements.

Common use cases illustrate how APIs deliver value:

  • Payment processing APIs enable e-commerce sites to accept credit cards without storing sensitive data.
  • Mapping and location APIs power ride-hailing, logistics, and geofencing features.
  • Data APIs supply market prices, on-chain metrics, or social feeds for dashboards and trading bots.
  • AI and ML model APIs let applications delegate tasks like transcription, summarization, or image analysis to cloud services.

For example, crypto applications rely heavily on exchange and on-chain data APIs to aggregate prices, monitor wallets, and execute analytics at scale. Evaluating latency, historical coverage, and data quality is critical when selecting a provider for time-series or transactional data.

How Developers and AI Use APIs

Developers use APIs to compose microservices, integrate third-party functionality, and automate workflows. For AI systems, APIs are essential both to access model inference and to fetch context data that models use as inputs.

Practical patterns include:

  1. Chaining: Calling multiple APIs in sequence to enrich a response (e.g., fetch user profile, then fetch personalized recommendations).
  2. Caching: Store frequent responses to reduce latency and cost.
  3. Bulk vs. Stream: Use batch endpoints for historical backfills and streaming/webhooks for real-time events.

When integrating APIs for analytics or AI, consider data consistency, schema evolution, and error semantics. Tools and platforms can monitor usage, surface anomalies, and provide fallbacks for degraded endpoints.

For researchers and teams assessing providers, structured evaluations help: compare SLA terms, data freshness, query flexibility, cost per request, and developer experience. Platforms that combine market data with AI-driven signals can accelerate exploratory analysis; for example, Token Metrics provides AI-backed research and ratings that teams often use to prioritize datasets and hypothesis testing.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ — What is an API?

Q1: What is the difference between an API and a library?

An API defines a set of rules and endpoints for interaction between systems, often over a network. A library is a local collection of functions and classes that an application links to at runtime. Libraries run in-process; APIs often run across processes or machines.

FAQ — How secure are APIs?

Q2: How should APIs be secured?

Common security measures include authentication (API keys, OAuth), encryption (TLS), input validation, rate limiting, and monitoring for anomalous patterns. Security practices should match the sensitivity of data and regulatory requirements.

FAQ — REST vs. GraphQL

Q3: When to choose REST over GraphQL?

REST is simple and well-suited to resource-based designs and caching. GraphQL is useful when clients need precise control over returned fields and want to minimize round trips. The right choice depends on client needs, caching strategy, and team expertise.

FAQ — What drives API costs?

Q4: What factors affect API pricing?

Pricing typically depends on request volume, data granularity, retention of historical data, and premium features such as websockets, SLAs, or enriched analytics. Evaluate costs under realistic usage patterns and spikes.

FAQ — How to get started with an API?

Q5: How do I evaluate and integrate a new API?

Start by reading docs, testing sandbox endpoints, and estimating request volumes. Validate data formats, authentication flows, and edge cases (rate limits, errors). Prototype with small workloads before committing to production usage.

FAQ — Are APIs regulated?

Q6: Do APIs involve legal or compliance considerations?

APIs that handle personal data, financial transactions, or regulated assets may be subject to privacy laws, financial regulations, or contractual obligations. Assess compliance requirements, data residency, and logging needs early in the design process.

Disclaimer

This article is for educational purposes only and does not constitute investment, legal, or professional advice. Information contained here is neutral and analytical; always perform independent research and consult qualified professionals for decisions involving legal or financial risk.

Research

Understanding APIs: What They Are and How They Work

Token Metrics Team
5
MIN

APIs (Application Programming Interfaces) are the invisible wiring that lets modern software communicate. From mobile apps fetching data to AI agents orchestrating workflows, APIs enable systems to request services, exchange structured data, and extend functionality without exposing internal implementation. This article unpacks what an API is, how different API styles operate, where they’re used (including crypto and AI contexts), and practical approaches to evaluate, integrate, and secure them.

What an API Is: core concepts and terminology

An API is a set of rules and conventions that allows one software component to interact with another. At its simplest, an API defines:

  • Endpoints: Named access points that accept requests (for example, /users or /price).
  • Methods: Actions supported at an endpoint (common HTTP verbs: GET, POST, PUT, DELETE).
  • Request/Response formats: Structured payloads, typically JSON or XML, that describe inputs and outputs.
  • Authentication and authorization: How clients prove identity and gain access to resources (API keys, OAuth, JWT).
  • Rate limits and quotas: Constraints that protect services from abuse and manage capacity.

Think of an API as a contract: the provider promises certain behaviors and data shapes, and the consumer agrees to use the API according to those rules. That contract enables modular design, reusability, and language-agnostic integration.

How APIs work: protocols, formats, and architectural styles

APIs use protocols and conventions to carry requests and responses. The most common patterns include:

  • REST (Representational State Transfer): Uses standard HTTP methods and resource-oriented URLs. REST favors stateless interactions and JSON payloads.
  • GraphQL: Lets clients request exactly the fields they need in a single query, reducing over- and under-fetching.
  • gRPC: A high-performance RPC framework that uses protocol buffers for compact binary messages—often used for internal microservices.
  • Webhooks: A push model where the API provider sends events to a client URL when something changes.

Choosing an architecture depends on latency needs, payload sizes, versioning strategy, and developer ergonomics. For instance, GraphQL can simplify complex frontend queries, while REST remains straightforward for simple resource CRUD operations.

Common API types and real-world use cases (including crypto and AI)

APIs power an enormous variety of use cases across industries. Representative examples include:

  • Data APIs: Provide access to datasets or market data (weather, financial prices, on-chain metrics).
  • Service APIs: Offer functionality like payments, authentication, or messaging.
  • Platform APIs: Enable third-party apps to extend a core product—social platforms, cloud providers, and exchanges expose platform APIs.
  • AI and ML APIs: Expose model inference endpoints for tasks such as text generation, image recognition, or embeddings.

In the crypto ecosystem, APIs are fundamental: explorers, node providers, exchanges, and analytics platforms expose endpoints for price feeds, order books, trade history, wallet balances, and on-chain events. AI-driven research tools use APIs to combine market data, on-chain signals, and model outputs into research workflows and agents.

How to evaluate and integrate an API: practical steps

Adopting an API requires both technical and operational considerations. A pragmatic evaluation process includes:

  1. Define needs: Identify required data, latency tolerance, throughput, and allowable costs.
  2. Review documentation: Clear docs, example requests, schema definitions, and SDKs accelerate integration.
  3. Test endpoints: Use sandbox keys or Postman to validate payloads, error handling, and edge cases.
  4. Assess SLAs and rate limits: Understand uptime guarantees and throttling behavior; build retry/backoff strategies.
  5. Security and compliance: Check authentication methods, encryption, and data retention policies.
  6. Monitoring and observability: Plan logging, latency monitoring, and alerting to detect regressions post-integration.

When integrating multiple APIs—such as combining market data with model inference—consider a middleware layer that normalizes data shapes, caches frequent responses, and orchestrates calls to minimize latency and cost.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: What is an API — common questions

What is the difference between an API and a web service?

An API is a broader concept that defines interfaces for software interaction. A web service is a type of API that operates over network protocols such as HTTP. In practice, REST and GraphQL are web service styles used to implement APIs.

Are public APIs safe to use?

Public APIs can be safe if they follow security best practices: HTTPS everywhere, proper authentication, input validation, and rate limiting. Consumers should validate responses, handle errors, and avoid exposing credentials in client-side code.

How do API keys differ from OAuth?

API keys are simple tokens that identify a client application and are often used for server-to-server interactions. OAuth is a delegated authorization framework that allows users to grant limited access to their accounts without sharing credentials—common for user-facing integrations.

What is API rate limiting and why does it matter?

Rate limiting constrains how many requests a client can make in a time window. It prevents abuse, protects backend resources, and ensures fair usage. Clients should implement retries with exponential backoff and caching to stay within limits.

When should I use GraphQL instead of REST?

Choose GraphQL when clients need flexible, precise queries that fetch nested or disparate fields in a single request. REST can be simpler for straightforward resource CRUD and when predictable caching semantics are required.

Can APIs be used for real-time data?

Yes. Real-time patterns include WebSockets, Server-Sent Events (SSE), and streaming APIs. Some platforms also provide push notifications or webhooks to deliver near-instant updates to subscribers.

How do I handle versioning in APIs?

Common strategies include using version numbers in the URL (e.g., /v1/) or via headers. Maintain backward compatibility, communicate deprecation timelines, and provide migration guides to minimize friction for integrators.

What monitoring should I implement after integrating an API?

Track uptime, latency percentiles, error rates, and throughput. Instrument retries, logging of failed requests, and alerts for sustained degradation. Observability helps diagnose issues and communicate with API providers when needed.

Disclaimer: This article is for educational and informational purposes only. It explains technical concepts related to APIs and integration practices and does not provide financial, investment, or regulatory advice. Always evaluate tools and services according to your own requirements and compliance needs.

Recent Posts

No Item Found
Announcements

Transforming Crypto AI Trading: Token Metrics Crypto API Now Integrates Seamlessly with Cursor AI

Token Metrics Team
8 min
MIN

AI is transforming the future of AI crypto trading—and with the integration of Token Metrics Crypto API and Cursor AI, we’re taking another giant leap forward.

This integration unlocks the ability for developers, quants, and crypto-native builders to create powerful trading agents using natural language, real-time crypto market data, and automation—all through a single interface.

Whether you're building an AI agent that monitors market trends, provides trading signals, or develops actionable investment plans, the combination of Token Metrics' cryptocurrency API and Cursor AI’s intelligent prompt interface is the future of how crypto strategies are built and executed.

In this blog, we’ll walk you through the integration, show you what’s possible, and explain why this is the most developer-friendly and data-rich crypto API available today.

What Is the Token Metrics Crypto API?

The Token Metrics API is a developer-grade crypto API that delivers over 80 advanced signals and data points per token. It covers:

  • AI Trader Grades & Investor Grades
  • Buy/Sell Signals based on bull/bear market trends
  • Support & Resistance levels
  • Sentiment Analysis
  • Quantitative Metrics & ROI Data
  • Project Reports & Risk Ratings

With deep market insight and predictive analytics, it’s built for developers looking to power anything from crypto dashboards to automated trading agents, telegram bots, or custom portfolio apps.

Now, with the Cursor AI integration, all of this power is just one conversation away.

What Is Cursor AI?

Cursor AI is an advanced AI development environment where agents can write code, test ideas, and build applications based on natural language prompts. With support for live API integrations and tool chaining, it’s the perfect platform to build and deploy intelligent agents—without switching tabs or writing boilerplate code.

Now, developers can query live cryptocurrency API data from Token Metrics using natural language—and let the agent create insights, strategies, and trading logic on the fly.

What You Can Build: Real Example

Let’s walk through what building with Token Metrics on Cursor AI looks like.

Step 1: Prompt the Agent

It starts with a simple prompt:
“What are the tools you have for Token Metrics MCP?”

In seconds, the agent replies with the full toolkit available via Token Metrics Multi-Client Protocol (MCP), including:

  • Access to trader and investor grades
  • Market analysis and real-time predictions
  • Quantitative metrics and token reports
  • AI-driven sentiment and momentum scores

Step 2: Ask for a Use Case

Next, you say:
“Give me a trading agent idea using those tools.”

The agent responds by combining crypto API tools into an actionable concept—for instance, a trading assistant that monitors bull flips on high-ROI tokens, cross-checks sentiment, and then alerts you when investor and trader grades align.

Step 3: Build a Plan Using Live Data

Then you prompt again:
“Can you explore the tools and create a comprehensive plan for me?”

Here’s the magic: the agent pulls real-time data directly from the Token Metrics API, analyzes signals, ranks tokens, identifies top performers, and builds a structured trading plan with entry/exit logic.

No manual research. No spreadsheet wrangling.
Just clean, fast, and intelligent crypto trading strategy—generated by AI using the best crypto API on the market.

Why This Changes Everything

🔗 Unified AI & Data Stack

With Token Metrics + Cursor AI, developers can interact with crypto data using plain English. There’s no more need to juggle raw JSON files or multiple APIs. One schema, one key, full access.

⚡ Real-Time, Actionable Insights

Cursor agents can now fetch live signals and respond instantly, allowing you to create agents that trade, monitor, alert, and adapt based on changing market conditions.

🤖 Build AI Trading Agents in Minutes

From backtesting tools to investment advisors to portfolio rebalancers, the combined power of a smart agent and a smart API turns hours of coding into a few well-written prompts.

Why Token Metrics API Is the Best Crypto API for AI Agents

  • Built for Speed – Fast response times and optimized endpoints for seamless agent-to-agent communication.
  • AI-Ready Structure – The API was designed with machine learning and automated trading in mind.
  • Massive Coverage – Thousands of tokens, over 80+ data points per asset.
  • MCP Gateway – Unified interface for all AI tools to access one consistent schema.
  • Free Tier – Get started with 5,000 free API calls at Token Metrics.

Whether you're building your first crypto trading bot or an enterprise-grade RAG assistant, this integration unlocks full creative and technical freedom.

Final Thoughts

This is just the beginning.

By connecting the Token Metrics API with Cursor AI, we’re moving toward a future where crypto tools are built by conversation, not code. It's not just about faster development—it’s about smarter, more adaptive trading tools that are accessible to everyone.

So go ahead.
Open up Cursor AI.
Type your first prompt.
And start building with the most intelligent crypto API in the game.

👉 Explore the Token Metrics API

👉 Start Building with Cursor AI

Watch Demo here!

Research

Top Crypto Trading Platforms in 2025

Token Metrics Team
10 min
MIN

Is the cryptocurrency market continues to mature, new technologies are emerging to give traders an edge. Among the most transformative is AI-powered crypto trading. From automating strategies to identifying hidden opportunities, AI is redefining how traders interact with digital assets.

In this guide, we’ll break down:

  • What is AI crypto trading?
  • What are the different types of cryptocurrency trading?
  • The top crypto trading exchanges and platforms, with Token Metrics as the leading AI crypto trading option.

What is AI Crypto Trading?

AI crypto trading refers to the use of artificial intelligence (AI), machine learning (ML), and data science techniques to make smarter, faster, and more informed trading decisions in the cryptocurrency markets.

These systems analyze vast datasets—price charts, market sentiment, technical indicators, social media trends, on-chain activity—to generate trading signals, price predictions, and portfolio strategies. The goal: remove emotion and bias from crypto trading and replace it with data-driven precision.

Some AI crypto trading tools offer:

  • Predictive analytics for token performance
  • Real-time trading signals based on pattern recognition
  • Automated execution of buy/sell orders based on predefined strategies
  • Portfolio optimization using volatility and correlation models
  • Sentiment analysis from Twitter, Reddit, and news feeds

AI is especially valuable in the 24/7 crypto markets, where human traders can’t keep up with constant volatility. With AI, traders can react instantly to market shifts and make decisions grounded in data—not gut feeling.

What Are the Types of Cryptocurrency Trading?

Understanding the major types of cryptocurrency trading is essential for choosing the right strategy—especially if you’re planning to use AI to assist or automate your trades.

1. Spot Trading

Spot trading is the simplest and most common form of crypto trading. You buy or sell a cryptocurrency at its current price, and the transaction settles immediately (or “on the spot”). Most traders begin here.

AI can assist by identifying ideal entry and exit points, evaluating token grades, and managing risk.

2. Futures Trading

Futures trading involves contracts that speculate on the future price of a cryptocurrency. Traders can go long or short, using leverage to amplify gains (and risks).

AI helps by identifying bullish or bearish trends, backtesting strategies, and automating trades with quantitative models that adapt to market changes.

3. Margin Trading

Margin trading allows users to borrow funds to increase their trade size. It’s risky but potentially more rewarding.

AI can reduce some of the risks by using real-time volatility data, calculating stop-loss levels, and dynamically adjusting positions.

4. Swing Trading

Swing traders hold positions for days or weeks, capturing short- to medium-term trends.

AI tools are ideal for swing trading, as they can combine technical indicators, market sentiment, and volume analysis to anticipate breakouts and reversals.

5. Day Trading

Day traders open and close positions within a single day, requiring rapid decision-making and constant monitoring.

Here, AI-powered bots can outperform humans by making thousands of micro-decisions per second, reducing slippage and emotional trading errors.

6. Algorithmic and Bot Trading

Algorithmic trading uses coded strategies to automate trades. AI takes this further by allowing the bot to learn and improve over time.

Token Metrics, for example, offers AI grades and indices that traders can plug into their own bots or use through the platform’s native AI strategies.

Top Cryptocurrency Trading Exchanges

When it comes to crypto trading platforms, there are two main categories:

  • Exchanges where you buy, sell, and hold crypto
  • Analytics platforms that help you decide what to trade and when

Below are some of the top cryptocurrency trading platforms in 2025—both exchanges and AI-powered tools—tailored to serious traders:

1. Token Metrics – The #1 AI Crypto Trading Platform

Token Metrics is not an exchange, but a crypto analytics and trading intelligence platform powered by AI. It offers:

  • Trader & Investor Grades (AI-powered scoring of tokens)
  • Bullish/Bearish Signals
  • Portfolio Strategies via AI Indices
  • Custom Alerts for price and grade movements
  • Data API for building AI trading bots

Token Metrics bridges the gap between raw data and actionable decisions. Whether you’re a beginner or a pro running algorithmic strategies, Token Metrics delivers the AI layer needed to outperform the market.

Traders use Token Metrics alongside centralized exchanges (like Binance or Coinbase) or DEXs to validate trades, identify top-performing narratives, and automate entry/exit based on AI signals.

2. Binance

Binance is the largest crypto exchange by volume, offering thousands of trading pairs, margin, and futures trading. While it doesn’t offer native AI tools, many traders integrate Binance with AI bots using their API.

Use Token Metrics + Binance together for AI-informed execution on a high-liquidity exchange.

3. Coinbase

Coinbase is ideal for retail investors and new traders. While it lacks advanced AI features, it’s a trusted fiat gateway.

Advanced users can subscribe to Coinbase Advanced or integrate with tools like Token Metrics to make smarter trading decisions.

4. Bybit

Bybit offers both spot and derivatives, plus social trading tools like copy trading. It’s popular with swing and leverage traders.

Combine Bybit with Token Metrics for AI-driven entry points on high-volatility setups.

5. Kraken

Kraken is known for strong security and a transparent track record. It supports spot, margin, and futures trading.

When paired with AI tools, Kraken becomes a secure execution venue for data-driven strategies.

6. OKX

OKX offers robust bot features, including grid trading and DCA bots. For users who prefer built-in automation, OKX is a solid option.

Still, Token Metrics outperforms on signal generation, narrative tracking, and AI-backed token scoring—making it an ideal data source for OKX bots.

Why AI is the Future of Crypto Trading

As cryptocurrency trading evolves, manual strategies alone can’t keep up. Market cycles are faster, token launches are more frequent, and volatility is constant. This is where crypto AI trading shines.

Here’s why more traders are adopting AI:

  • Speed: AI analyzes and reacts faster than any human
  • Scale: It can monitor 1,000s of tokens across multiple chains simultaneously
  • Emotionless: AI doesn’t panic-sell or FOMO-buy
  • Backtested: Strategies are tested on historical data for statistical confidence
  • Adaptive: AI learns and improves over time based on market behavior

Platforms like Token Metrics make this technology accessible—offering plug-and-play AI indices, custom signals, and portfolio intelligence for retail traders, funds, and institutions alike.

Final Thoughts

Cryptocurrency trading is becoming more competitive, data-driven, and automated. With the rise of crypto AI trading, traders now have the tools to gain a true edge—whether they’re investing $100 or managing $1M.

If you’re serious about crypto trading in 2025, don’t just guess—trade with data, trade with AI.

Explore how Token Metrics can power your portfolio with AI-generated insights, real-time signals, and next-generation trading tools.

Announcements

🚀 Token Metrics API Goes Live on Hacker News – The AI Crypto Toolkit for Builders

Token Metrics Team
5 min
MIN

The Token Metrics API has officially launched on Hacker News, marking a major milestone in our mission to bring AI-powered crypto insights to every developer, founder, and builder in the Web3 space.

If you're building trading bots, dashboards, investment tools, or AI agents that interact with the crypto market, this is your developer edge in 2025. Forget raw feeds and static charts—this is real-time, AI-grade crypto intelligence available in minutes via a single API key.

What Is the Token Metrics API?

The Token Metrics API is a powerful crypto intelligence engine built for developers who want more than just price data. It combines machine learning, quantitative modeling, and narrative indexing to deliver structured signals that help users make smarter trading decisions.

Instead of simply showing what the market did, the API helps predict what it might do—with insights like:

  • Trader & Investor Grades (0–100 scores on momentum and fundamentals)
  • Bullish/Bearish Signals across 6,000+ assets
  • Narrative-based Indices like DeFi, AI, Memes, RWAs, and more
  • Quantitative Risk Scores and sentiment analysis
  • Real-time updates, no lag, no stale metrics

It’s like giving your crypto bot a brain—and not just any brain, an AI-trained crypto analyst that never sleeps.

Why It’s Different from Every Other Crypto API

Most APIs give you prices, volume, and maybe some on-chain data. Token Metrics gives you opinionated intelligence derived from over 80 on-chain, off-chain, technical, and sentiment indicators.

That means:

  • Your dashboard users get real-time grades and trending tokens.
  • Your AI agent can speak fluently about token fundamentals.
  • Your bot can act on bullish flips before the rest of the market.

We’ve designed this API for modularity and plug-and-play usability. With 21+ endpoints and official SDKs, you can ship faster and smarter—no custom pipeline needed.

What Can You Build?

Whether you're a solo developer or building inside a Web3 team, the possibilities are wide open.

Build smarter with Token Metrics if you’re creating:

  • 🧠 AI trading agents that query real-time token grades
  • 📊 Investor dashboards that surface top-rated altcoins
  • 📈 DApps that alert users to sector momentum shifts
  • 📱 Mobile apps with embedded market signals
  • 🧪 Backtesting systems for narrative-based portfolio strategies

Because the API supports OpenAI, Claude, Cursor, and Raycast integrations, your agents and LLM-powered tools can query live crypto intelligence in natural language—no additional parsing required.

Why the Hacker News Feature Matters

Token Metrics API just made it to the front page of Hacker News, one of the internet’s most trusted platforms for discovering high-impact developer tools.

This means:

  • 💬 A community of builders and engineers is already testing the API
  • 🧪 Feedback is pouring in, helping us evolve faster
  • 🚀 Your early adoption puts you ahead of the curve

If you’ve been waiting for the right time to integrate AI-native crypto signals into your product—this is it.

Get Started for Free

We’re offering 5,000 free API calls/month for every new developer.

Sign up, plug in your key, and build:

  • With one consistent schema
  • Across multiple clients
  • Without chasing multiple API docs

Your users don’t just want raw data anymore—they want insights. Token Metrics delivers those insights in real time, with zero guesswork.

Join the Developer Revolution

💥 Explore the API – Get your key in 30 seconds
💬 Join the Hacker News discussion – See what other devs are saying
📚 Browse Docs – View full endpoints and SDKs

One API. One schema. Smarter crypto apps.
The future of crypto building is AI-powered—and it starts here.

Research

Bullish or Bearish? Interpreting AI Signals in Today’s Volatile Crypto Market

Token Metrics Team
5 min
MIN

Introduction

Crypto moves fast — and traders who can't read the signs get left behind. But in a market where emotions dominate, how do you distinguish between a real trend and a fakeout? That’s where AI-powered trading signals come in.

Token Metrics AI monitors over 6,000 tokens using 80+ data points, from technical momentum to on-chain activity and social sentiment. Its bullish and bearish signals aren’t just flashes of color — they’re actionable, data-driven insights that can guide decisions in chaotic markets.

In this post, we break down how to interpret bullish and bearish signals, what they’ve been saying recently, and how to react when market direction flips suddenly.

What Are Bullish and Bearish Signals?

Let’s start with the basics:

  • Bullish Signal (Green Dot): Indicates that a token is showing signs of an upward trend based on combined technical, sentiment, and on-chain analysis.
  • Bearish Signal (Red Dot): Suggests that a token is losing momentum, and price downside or stagnation is likely.

But these signals aren’t standalone — they come with contextual grades, like the Trader Grade, which ranks signal strength from 0 to 100. This allows you to not just know the direction, but the confidence behind it.

What Happened Recently? The May 30 Flip

On May 30, 2025, Token Metrics AI issued a broad bearish flip across much of the market. That included:

  • Ethereum
  • Bittensor
  • Launchcoin
  • Many Real World Asset and L2 tokens

The AI signal flipped red, and Trader Grades fell across the board. Why? Here's what the AI detected:

  • Slowing volume
  • Negative sentiment shift
  • Liquidity thinning on DEXs
  • On-chain accumulation stalling

This wasn’t panic-driven — it was a data-driven, proactive warning that the cycle had peaked. In a world where most traders rely on lagging indicators or Twitter sentiment, this was an edge.

How to Interpret a Bullish Signal

A bullish signal isn’t an instant “buy” — it's a call to investigate. Here's what to check when a green dot appears:

✅ 1. Trader Grade Above 80

This means high conviction. If it's between 60–79, the trend is forming, but may lack strength.

✅ 2. Volume Confirmation

Price up + volume up = good. Price up + volume flat = caution.

✅ 3. Narrative Alignment

If the token fits a hot theme (like RWAs or AI), that adds strength to the signal.

✅ 4. Recent Price Action

Did the signal appear after a breakout, or just before? Entry timing depends on whether you're catching the beginning or chasing the middle of the trend.

✅ 5. Compare to Peers

If 3–5 similar tokens are also turning bullish, that indicates sector-wide rotation — a better entry environment.

How to Interpret a Bearish Signal

Red doesn’t mean "dump immediately" — it means it's time to tighten your risk.

❗ 1. Trader Grade Below 50

This indicates deteriorating conviction — exit or reduce exposure.

❗ 2. Volume Divergence

If price is flat but volume is fading, that’s a warning of a potential breakdown.

❗ 3. Signal Timing

Did the bearish flip happen near local highs? That’s often the best exit point.

❗ 4. Check for Repeats

Was this the second red dot in a week? That could confirm a longer-term downtrend.

❗ 5. BTC/ETH Context

If Bitcoin or ETH also flip bearish, it may suggest macro pressure, not just token-specific weakness.

Real-Time Examples from the Webinar

During the June 5 Token Metrics webinar, we walked through examples of how these signals worked in real time:

🟢 Bullish (April) – Launchcoin

Strong signal, grade in the 80s. Resulted in a massive short-term run.

🔴 Bearish (May 30) – Ethereum

Signal turned red around $3,490. Traders who followed it avoided the 55% drawdown that followed.

🔴 Bearish (June) – Fartcoin

After a 700% run-up, the signal flipped bearish with a low Trader Grade of ~24. Result? A slow bleed lower as sentiment cooled.

What Makes AI Signals Different from Traditional TA?

Feature                                                    Token Metrics AI                     Traditional TA

Combines social + on-chain                    ✅                                       ❌

Updated in real time                                 ✅                                       ❌

Machine learning trained on past data   ✅                                       ❌

Outputs confidence grade                       ✅                                       ❌

Adapts to new narratives                         ✅                                       ❌

This isn’t about moving averages or MACD — it’s about combining the entire digital footprint of a token to anticipate what comes next.

How to React to a Signal Flip

What do you do when your favorite token suddenly flips from bullish to bearish?

  1. Reduce exposure immediately — even if you don’t sell everything, cut risk.
  2. Check the Grade — if it’s falling, momentum is likely over.
  3. Watch Peer Tokens — if similar projects are also turning red, it confirms sector rotation.
  4. Set New Alerts — if the signal flips back to green, be ready to re-enter.

Your job isn’t to predict the market. It’s to respond to what the data is saying.

How to Combine AI Signals with a Strategy

Here’s a basic framework:

Entry

  • Bullish signal + Trader Grade > 80 = enter with full size.
  • Grade 60–79 = enter small or wait for confirmation.

Exit

  • Bearish signal = scale out or exit.
  • Grade < 50 = no new positions unless for short trades.

Risk

  • Position size scales with grade.
  • Only trade tokens with high liquidity and volume confirmation.

This keeps your system simple, repeatable, and data-driven.

Conclusion

In volatile markets, conviction matters. Token Metrics AI doesn’t just point up or down — it tells you how strong the trend is, how likely it is to last, and when it’s time to pivot.

Don’t trade on emotions. Don’t chase hype. Use the signals — and trust the grade.

Because in a market that never sleeps, it pays to have an AI watching your back.

Research

Crypto Market Cools Off: What Is Token Metrics AI Saying Now

Token Metrics Team
5 min
MIN

Introduction

The euphoria of April and May in the crypto market has officially hit the brakes. While traders were riding high just weeks ago, the mood has shifted — and the data confirms it. Token Metrics’ proprietary AI signals flipped bearish on May 30, and since then, the market has been slowly but steadily declining.

In this post, we break down what’s happened since the bearish signal, how major altcoins and sectors are reacting, and what Token Metrics’ indicators are telling us about what might come next.

The Big Picture: Cooling Off After a Hot Q1 and Q2 Start

The platform’s AI signal turned bearish on May 30 when the total crypto market cap hit $3.34 trillion. Since then, the momentum that defined early 2025 has reversed.

This wasn’t a sudden crash — it’s a slow bleed. The signal shift didn’t come from headline-driven panic, but from data-level exhaustion: volume softening, sentiment stalling, and trend strength fading across most tokens.

Token Metrics AI recognized the shift — and issued the warning.

What the Bearish Signal Means

The AI model analyzes over 80 metrics across price, volume, sentiment, and on-chain data. When key trends across these data sets weaken, the system flips from bullish (green) to bearish (red).

On May 30:

  • Trader Grades across most tokens declined
  • Signal sentiment flipped bearish
  • Momentum and velocity cooled down

According to the model, these were signs of a broad de-risking cycle — not just isolated weakness.

Sectors Showing Declines

Even tokens that had been performing well throughout Q2 began to stall or roll over.

🚨 Launch Coin

Previously one of the top performers in April, Launch Coin saw its grades decrease and price action softened.It may even be rebranding — a typical signal that a project is pivoting after a hype cycle.

🏦 Real World Assets (RWAs)

RWAs were hot in March–May, but by early June, volume and signal quality had cooled off significantly.

🔐 ZK and L2s

Projects like Starknet and zkSync, once dominant in trader attention, have seen signal strength drop, with many now scoring below 70.

The cooling effect is broad, touching narratives, sectors, and high-performing individual tokens alike.

The Bull-Bear Indicator in Action

One of the key tools used by Token Metrics is the Bull vs. Bear Indicator, which aggregates bullish vs. bearish signals across all tokens tracked.

As of early June:

  • The percentage of tokens with bullish signals dropped to its lowest since January.
  • New projects launching with strong grades also saw a decline.
  • Even community-favorite tokens began receiving “exit” alerts.

This isn’t fear — it’s fatigue.

How Traders Are Reacting

During the webinar, we noted that many users who rely on Token Metrics signals began rotating into stables once the May 30 signal flipped. Others reduced leverage, paused entries, or shifted into defensive plays like ETH and BTC.

This reflects an important philosophy:

"When the data changes, we change our approach."

Instead of trying to fight the tape or chase rebounds, disciplined traders are using the bearish signal to protect gains and preserve capital.

What About Ethereum and Bitcoin?

Even ETH and BTC, the two bellwether assets, aren’t immune.

  • Ethereum: Lost momentum after a strong May push. Its Trader Grade is dropping, and the AI signals currently reflect neutral-to-bearish sentiment.
  • Bitcoin: While still holding structure better than altcoins, it has also declined since peaking above $72k. Volume weakening and sentiment falling suggest caution.

In previous cycles, ETH and BTC acted as shelters during altcoin corrections. But now, even the majors show weakness — another reason why the bearish flip matters.

What Could Reverse This?

Abdullah Sarwar, head of research at Token Metrics, mentioned that for the signals to flip back bullish, we would need to see:

  • Increased momentum across top tokens
  • New narratives (e.g., real-world utility, cross-chain demand)
  • Higher volume and liquidity inflows
  • Positive macro or ETF news

Until then, the system will remain in defensive mode — prioritizing safety over chasing trades.

How to Act During a Bearish Signal

The team offered several tips for traders during this cooling-off period:

  1. Reduce exposure
    Don’t hold full positions in assets with weak grades or bearish signals.

  2. Watch signal reversals
    Keep an eye on sudden bullish flips with high Trader Grades — they often mark trend reversals.

  3. Rebalance into safer assets
    BTC, ETH, or even stables allow you to sit on the sidelines while others take unnecessary risk.

  4. Use Token Metrics filters
    Use the platform to filter for:

    • Top tokens with >80 grades
    • Signals that flipped bullish in the last 3 days
    • Low market-cap tokens with strong on-chain activity

These tools help find exceptions in a weak market.

Conclusion: Bearish Doesn’t Mean Broken

Markets cycle — and AI sees it before headlines do.

Token Metrics' bearish signal wasn’t a call to panic. It was a calibrated, data-backed alert that the trend had shifted — and that it was time to switch from offense to defense.

If you’re navigating this new phase, listen to the data. Use the tools. And most importantly, avoid trading emotionally.

The bull market might return. When it does, Token Metrics AI will flip bullish again — and you’ll be ready.

Research

Backtesting Token Metrics AI: Can AI Grades Really Predict Altcoin Breakouts?

Token Metrics Team
5 min
MIN

To test the accuracy of Token Metrics' proprietary AI signals, we conducted a detailed six-month backtest across three different tokens — Fartcoin, Bittensor ($TAO), and Ethereum. Each represents a unique narrative: memecoins, AI infrastructure, and blue-chip Layer 1s. Our goal? To evaluate how well the AI’s bullish and bearish signals timed market trends and price action.

Fartcoin:

The green and red dots on the following Fartcoin price chart represent the bullish and bearish market signals, respectively. Since Nov 26, 2024, Token Metrics AI has given 4 trading signals for Fartcoin. Let’s analyze each signal separately.

The Fartcoin chart above displays green and red dots that mark bullish and bearish signals from the Token Metrics AI, respectively. Over the last six months — starting November 26, 2024 — our system produced four significant trade signals for Fartcoin. Let’s evaluate them one by one.

The first major signal was bullish on November 26, 2024, when Fartcoin was trading at $0.29. This signal preceded a massive run-up, with the price topping out at $2.49. That’s an astounding 758% gain — all captured within just under two months. It’s one of the most powerful validations of the AI model’s ability to anticipate momentum early.

Following that rally, a bearish signal was triggered on January 26, 2025, just before the market corrected. Fartcoin retraced sharply, plunging 74.76% from the highs. Traders who acted on this bearish alert could have avoided substantial drawdowns — or even profited through short-side exposure.

On March 25, 2025, the AI turned bullish again, as Fartcoin traded near $0.53. Over the next several weeks, the token surged to $1.58, a 198% rally. Again, the AI proved its ability to detect upward momentum early.

Most recently, on June 1, 2025, Token Metrics AI flipped bearish once again. The current Trader Grade of 24.34 reinforces this view. For now, the system warns of weakness in the memecoin market — a trend that appears to be playing out in real-time.

Across all four trades, the AI captured both the explosive upside and protected traders from steep corrections — a rare feat in the volatile world of meme tokens.

Bittensor

Next, we examine Bittensor, the native asset of the decentralized AI Layer 1 network. Over the last six months, Token Metrics AI produced five key signals — and the results were a mixed bag but still largely insightful.

In December 2024, the AI turned bearish around $510, which preceded a sharp decline to $314 by February — a 38.4% drawdown. This alert helped traders sidestep a brutal correction during a high-volatility period.

On February 21, 2025, the system flipped bullish, but this trade didn't play out as expected. The price dropped 25.4% after the signal. Interestingly, the AI reversed again with a bearish signal just five days later, showing how fast sentiment and momentum can shift in emerging narratives like AI tokens.

The third signal marked a solid win: Bittensor dropped from $327 to $182.9 following the bearish call — another 44% drop captured in advance.

In April 2025, momentum returned. The AI issued a bullish alert on April 19, with TAO at $281. By the end of May, the token had rallied to over $474, resulting in a 68.6% gain — one of the best performing bullish signals in the dataset.

On June 4, the latest red dot (bearish) appeared. The model anticipates another downward move — time will tell if it materializes, but the track record suggests caution is warranted.

Ethereum

Finally, we analyze the AI’s predictive power for Ethereum, the second-largest crypto by market cap. Over the six-month window, Token Metrics AI made three major calls — and each one captured critical pivots in ETH’s price.

On November 7, 2024, a green dot (bullish) appeared when ETH was priced at $2,880. The price then surged to $4,030 in less than 40 days, marking a 40% gain. For ETH, such a move is substantial and was well-timed.

By December 24, the AI flipped bearish with ETH trading at $3,490. This signal was perhaps the most important, as it came ahead of a major downturn. ETH eventually bottomed out near $1,540 in April 2025, avoiding a 55.8% drawdown for those who acted on the signal.

In May 2025, the AI signaled another bullish trend with ETH around $1,850. Since then, the asset rallied to $2,800, creating a 51% gain.

These three trades — two bullish and one bearish — show the AI’s potential in navigating large-cap assets during both hype cycles and corrections.Backtesting Token Metrics AI across memecoins, AI narratives, and Ethereum shows consistent results: early identification of breakouts, timely exit signals, and minimized risk exposure. While no model is perfect, the six-month history reveals a tool capable of delivering real value — especially when used alongside sound risk management.

Whether you’re a trader looking to time the next big altcoin rally or an investor managing downside in turbulent markets, Token Metrics AI signals — available via the fastest crypto API — offer a powerful edge.

Backtesting Token Metrics AI across memecoins, AI narratives, and Ethereum shows consistent results: early identification of breakouts, timely exit signals, and minimized risk exposure. While no model is perfect, the six-month history reveals a tool capable of delivering real value — especially when used alongside sound risk management.

Whether you’re a trader looking to time the next big altcoin rally or an investor managing downside in turbulent markets, Token Metrics AI signals — available via the fastest crypto API — offer a powerful edge.

Research

Token Metrics API vs. CoinGecko API: Which Crypto API Should You Choose in 2025?

Token Metrics Team
7 min
MIN

As the crypto ecosystem rapidly matures, developers, quant traders, and crypto-native startups are relying more than ever on high-quality APIs to build data-powered applications. Whether you're crafting a trading bot, developing a crypto research platform, or launching a GPT agent for market analysis, choosing the right API is critical.

Two names dominate the space in 2025: CoinGecko and Token Metrics. But while both offer access to market data, they serve fundamentally different purposes. CoinGecko is a trusted source for market-wide token listings and exchange metadata. Token Metrics, on the other hand, delivers AI-powered intelligence for predictive analytics and decision-making.

Let’s break down how they compare—and why the Token Metrics API is the superior choice for advanced, insight-driven builders.

🧠 AI Intelligence: Token Metrics Leads the Pack

At the core of Token Metrics is machine learning and natural language processing. It’s not just a data feed. It’s an AI that interprets the market.

Features exclusive to Token Metrics API:

  • Trader Grade (0–100) – Short-term momentum score based on volume, volatility, and technicals
  • Investor Grade (0–100) – Long-term asset quality score using fundamentals, community metrics, liquidity, and funding
  • Bullish/Bearish AI Signals – Real-time alerts based on over 80 weighted indicators
  • Sector-Based Smart Indices – Curated index sets grouped by theme (AI, DeFi, Gaming, RWA, etc.)
  • Sentiment Scores – Derived from social and news data using NLP
  • LLM-Friendly AI Reports – Structured, API-returned GPT summaries per token
  • Conversational Agent Access – GPT-based assistant that queries the API using natural language

In contrast, CoinGecko is primarily a token and exchange aggregator. It offers static data: price, volume, market cap, supply, etc. It’s incredibly useful for basic info—but it lacks context or predictive modeling.

Winner: Token Metrics — The only crypto API built for AI-native applications and intelligent automation.

🔍 Data Depth & Coverage

While CoinGecko covers more tokens and more exchanges, Token Metrics focuses on providing actionable insights rather than exhaustively listing everything.

Feature                                                   Token Metrics API                                    CoinGecko API

Real-time + historical OHLCV              ✅                                                          ✅

Trader/Investor Grades                        ✅ AI-powered                                     ❌

Exchange Aggregation                         ✅ (Used in indices, not exposed)     ✅

Sentiment & Social Scoring                  ✅ NLP-driven                                     ❌

AI Signals                                               ✅                                                         ❌

Token Fundamentals                            ✅ Summary via deepdive         ⚠️ Limited

                                                                        endpoint

NFT Market Data                                  ❌                                                          ✅

On-Chain Behavior                               ✅ Signals + Indices                   ⚠️ Pro-only (limited)

If you're building something analytics-heavy—especially trading or AI-driven—Token Metrics gives you depth, not just breadth.

Verdict: CoinGecko wins on broad metadata coverage. Token Metrics wins on intelligence and strategic utility.

🛠 Developer Experience

One of the biggest barriers in Web3 is getting devs from “idea” to “prototype” without friction. Token Metrics makes that easy.

Token Metrics API Includes:

  • SDKs for Python, Node.js, and Postman
  • Quick-start guides and GitHub sample projects
  • Integrated usage dashboard to track limits and history
  • Conversational agent to explore data interactively
  • Clear, logical endpoint structure across 21 data types

CoinGecko:

  • Simple REST API
  • JSON responses
  • Minimal docs
  • No SDKs
  • No built-in tooling (must build from scratch)

Winner: Token Metrics — Serious devs save hours with ready-to-go SDKs and utilities.

📊 Monitoring, Quotas & Support

CoinGecko Free Tier:

  • 10–30 requests/min
  • No API key needed
  • Public endpoints
  • No email support
  • Rate limiting enforced via IP

Token Metrics Free Tier:

  • 5,000 requests/month
  • 1 request/min
  • Full access to AI signals, grades, rankings
  • Telegram & email support
  • Upgrade paths to 20K–500K requests/month

While CoinGecko’s no-login access is beginner-friendly, Token Metrics offers far more power per call. With just a few queries, your app can determine which tokens are gaining momentum, which are losing steam, and how portfolios should be adjusted.

Winner: Token Metrics — Better for sustained usage, scaling, and production reliability.

💸 Pricing & Value

Plan Feature                CoinGecko Pro            Token Metrics API

Entry Price                  ~$150/month                $99/month

AI Grades & Signals            ❌                               ✅ 

Sentiment Analytics            ❌                               ✅

Sector Index Insights          ❌                               ✅

NLP Token Summaries       ❌                                ✅

Developer SDKs                  ❌                                ✅

Token-Based Discounts     ❌                                ✅ (up to 35% with $TMAI)

For what you pay, Token Metrics delivers quant models and intelligent signal streams — not just raw price.

Winner: Token Metrics — Cheaper entry, deeper value.

🧠 Use Cases Where Token Metrics API Shines

  • Trading Bots
    Use Trader Grade and Signal endpoints to enter/exit based on AI triggers.
  • GPT Agents
    Generate conversational answers for “What’s the best AI token this week?” using structured summaries.
  • Crypto Dashboards
    Power sortable, filtered token tables by grade, signal, or narrative.
  • Portfolio Rebalancers
    Track real-time signals for tokens held, flag risk zones, and show sector exposure.
  • LLM Plugins
    Build chat-based investment tools with explainability and score-based logic.

🧠 Final Verdict: CoinGecko for Info, Token Metrics for Intelligence

If you're building a crypto price tracker, NFT aggregator, or exchange overview site, CoinGecko is a solid foundation. It’s reliable, broad, and easy to get started.

But if your product needs to think, adapt, or help users make better decisions, then Token Metrics API is in another class entirely.

You're not just accessing data — you're integrating AI, machine learning, and predictive analytics into your app. That’s the difference between showing the market and understanding it.

🔗 Ready to Build Smarter?

  • ✅ 5,000 free API calls/month
  • 🤖 Trader & Investor Grades
  • 📊 Live Bull/Bear signals
  • 🧠 AI-powered summaries and GPT compatibility
  • ⚡ 21 endpoints + Python/JS SDKs

👉 Start with Token Metrics API

Research

Python Quick-Start with Token Metrics: The Ultimate Crypto Price API

Token Metrics Team
10 min
MIN

If you’re a Python developer looking to build smarter crypto apps, bots, or dashboards, you need two things: reliable data and AI-powered insights. The Token Metrics API gives you both. In this tutorial, we’ll show you how to quickly get started using Token Metrics as your Python crypto price API, including how to authenticate, install the SDK, and run your first request in minutes.

Whether you’re pulling live market data, integrating Trader Grades into your trading strategy, or backtesting with OHLCV data, this guide has you covered.

🚀 Quick Setup for Developers in a Hurry

Install the official Token Metrics Python SDK:

pip install tokenmetrics

Or if you prefer working with requests directly, no problem. We’ll show both methods below.

🔑 Step 1: Generate Your API Key

Before anything else, you’ll need a Token Metrics account.

  1. Go to app.tokenmetrics.com/en/api
  2. Log in and navigate to the API Keys Dashboard
  3. Click Generate API Key
  4. Name your key (e.g., “Development”, “Production”)
  5. Copy it immediately — keep it secret.

You can monitor usage, rate limits, and quotas right from the dashboard. Track each key’s status, last used date, and revoke access at any time.

📈 Step 2: Retrieve Crypto Prices in Python

Here’s a simple example to fetch the latest price data for Ethereum (ETH):

import requests

API_KEY = "YOUR_API_KEY"

headers = {"x-api-key": API_KEY}

url = "https://api.tokenmetrics.com/v2/daily-ohlcv?symbol=ETH&startDate=<YYYY-MM-DD>&endDate=<YYYY-MM-DD>"

response = requests.get(url, headers=headers)

data = response.json()

for candle in data['data']:

    print(f"Date: {candle['DATE']} | Close: ${candle['CLOSE']}")

You now have a working python crypto price API pipeline. Customize startDate or endDate to get specific range of historical data.

📊 Add AI-Powered Trader Grades

Token Metrics’ secret sauce is its AI-driven token ratings. Here’s how to access Trader Grades for ETH:

grade_url = "https://api.tokenmetrics.com/v2/trader-grades?symbol=ETH&limit=30d"

grades = requests.get(grade_url, headers=headers).json()['data']

for day in grades:

    print(f"{day['DATE']} — Trader Grade: {day['TA_GRADE']}")

Use this data to automate trading logic (e.g., enter trades when Grade > 85) or overlay on charts.

🔁 Combine Data for Backtesting

Want to test a strategy? Merge OHLCV and Trader Grades for any token:

import pandas as pd

ohlcv_df = pd.DataFrame(data['data'])

grades_df = pd.DataFrame(grades)

combined_df = pd.merge(ohlcv_df, grades_df, on="DATE")

print(combined_df.head())

Now you can run simulations, build analytics dashboards, or train your own models.

⚙️ Endpoint Coverage for Python Devs

  • /daily-ohlcv: Historical price data
  • /trader-grades: AI signal grades (0–100)
  • /trading-signals: Bullish/Bearish signals for short and long positions.
  • /sentiment: AI-modeled sentiment scores
  • /tmai: Ask questions in plain English

All endpoints return structured JSON and can be queried via requests, axios, or any modern client.

🧠 Developer Tips

  • Each request = 1 credit (tracked in real time)
  • Rate limits depend on your plan (Free = 1 req/min)
  • Use the API Usage Dashboard to monitor and optimize
  • Free plan = 5,000 calls/month — perfect for testing and building MVPs

💸 Bonus: Save 35% with $TMAI

You can reduce your API bill by up to 35% by staking and paying with Token Metrics’ native token, $TMAI. Available via the settings → payments page.

🌐 Final Thoughts

If you're searching for the best python crypto price API with more than just price data, Token Metrics is the ultimate choice. It combines market data with proprietary AI intelligence, trader/investor grades, sentiment scores, and backtest-ready endpoints—all in one platform.

✅ Real-time & historical data
✅ RESTful endpoints
✅ Python-ready SDKs and docs
✅ Free plan to start building today

Start building today → tokenmetrics.com/api

Looking for SDK docs? Explore the full Python Quick Start Guide

Research

Crypto API to Google Sheets in 5 Minutes: How to Use Token Metrics API with Apps Script

Token Metrics Team
6 min
MIN

If you're a trader, data analyst, or crypto enthusiast, chances are you've wanted to pull live crypto data directly into Google Sheets. Whether you're tracking prices, building custom dashboards, or backtesting strategies, having real-time data at your fingertips can give you an edge.

In this guide, we'll show you how to integrate the Token Metrics API — a powerful crypto API with free access to AI-powered signals — directly into Google Sheets in under 5 minutes using Google Apps Script.

📌 Why Use Google Sheets for Crypto Data?

Google Sheets is a flexible, cloud-based spreadsheet that:

  • Requires no coding to visualize data
  • Can be shared and updated in real time
  • Offers formulas, charts, and conditional formatting
  • Supports live API connections with Apps Script

When combined with the Token Metrics API, it becomes a powerful dashboard that updates live with Trader Grades, Bull/Bear Signals, historical OHLCV data, and more.

🚀 What Is Token Metrics API?

The Token Metrics API provides real-time and historical crypto data powered by AI. It includes:

  • Trader Grade: A score from 0 to 100 showing bullish/bearish potential
  • Bull/Bear Signal: A binary signal showing market direction
  • OHLCV: Open-High-Low-Close-Volume price history
  • Token Metadata: Symbol, name, category, market cap, and more

The best part? The free Basic Plan includes:

  • 5,000 API calls/month
  • Access to core endpoints
  • Hourly data refresh
  • No credit card required

👉 Sign up for free here

🛠️ What You’ll Need

  • A free Token Metrics API key
  • A Google account
  • Basic familiarity with Google Sheets

⚙️ How to Connect Token Metrics API to Google Sheets

Here’s how to get live AI-powered crypto data into Sheets using Google Apps Script.

🔑 Step 1: Generate Your API Key

  1. Visit: https://app.tokenmetrics.com/en/api
  2. Click “Generate API Key”
  3. Copy it — you’ll use this in the script

📄 Step 2: Create a New Google Sheet

  1. Go to Google Sheets
  2. Create a new spreadsheet
  3. Click Extensions > Apps Script

💻 Step 3: Paste This Apps Script

const TOKEN_METRICS_API_KEY = 'YOUR_API_KEY_HERE';

async function getTraderGrade(symbol) {

  const url = `https://api.tokenmetrics.com/v2/trader-grades?symbol=${symbol.toUpperCase()}`;

  const options = {

    method: 'GET',

    contentType: 'application/json',

    headers: {

      'accept': 'application/json',

      'x-api-key': TOKEN_METRICS_API_KEY,

    },

    muteHttpExceptions: true

  };

  

  const response = UrlFetchApp.fetch(url, options);

  const data = JSON.parse(response.getContentText() || "{}")

  

  if (data.success && data.data.length) {

    const coin = data.data[0];

    return [

      coin.TOKEN_NAME,

      coin.TOKEN_SYMBOL,

      coin.TA_GRADE,

      coin.DATE

    ];

  } else {

    return ['No data', '-', '-', '-'];

  }

}

async function getSheetData() {

  const sheet = SpreadsheetApp.getActiveSpreadsheet().getActiveSheet();

  const symbols = sheet.getRange('A2:A').getValues().flat().filter(Boolean);

  const results = [];

  results.push(['Name', 'Symbol', 'Trader Grade', 'Date']);

  for (const symbol of symbols) {

    if (symbol) {

      const row = await getTraderGrade(symbol);

      results.push(row);

    }

  }

  sheet.getRange(2, 2, results.length, results[0].length).setValues(results);

}

🧪 Step 4: Run the Script

  1. Replace 'YOUR_API_KEY_HERE' with your real API key.
  2. Save the project as TokenMetricsCryptoAPI.
  3. In your sheet, enter a list of symbols (e.g., BTC, ETH, SOL) in Column A.
  4. Go to the script editor and run getSheetData() from the dropdown menu.

Note: The first time, Google will ask for permission to access the script.

✅ Step 5: View Your Live Data

After the script runs, you’ll see:

  • Coin name and symbol
  • Trader Grade (0–100)
  • Timestamp

You can now:

  • Sort by Trader Grade
  • Add charts and pivot tables
  • Schedule automatic updates with triggers (e.g., every hour)

🧠 Why Token Metrics API Is Ideal for Google Sheets Users

Unlike basic price APIs, Token Metrics offers AI-driven metrics that help you:

  • Anticipate price action before it happens
  • Build signal-based dashboards or alerts
  • Validate strategies against historical signals
  • Keep your data fresh with hourly updates

And all of this starts for free.

🏗️ Next Steps: Expand Your Sheet

Here’s what else you can build:

  • A portfolio tracker that pulls your top coins’ grades
  • A sentiment dashboard using historical OHLCV
  • A custom screener that filters coins by Trader Grade > 80
  • A Telegram alert system triggered by Sheets + Apps Script + Webhooks

You can also upgrade to the Advanced Plan to unlock 21 endpoints including:

  • Investor Grades
  • Smart Indices
  • Sentiment Metrics
  • Quantitative AI reports
  • 60x API speed

🔐 Security Tip

Never share your API key in a public Google Sheet. Use script-level access and keep the sheet private unless required.

🧩 How-To Schema Markup (for SEO)

{

  "@context": "https://schema.org",

  "@type": "HowTo",

  "name": "Crypto API to Google Sheets in 5 Minutes",

  "description": "Learn how to connect the Token Metrics crypto API to Google Sheets using Google Apps Script and get real-time AI-powered signals and prices.",

  "totalTime": "PT5M",

  "supply": [

    {

      "@type": "HowToSupply",

      "name": "Google Sheets"

    },

    {

      "@type": "HowToSupply",

      "name": "Token Metrics API Key"

    }

  ],

  "tool": [

    {

      "@type": "HowToTool",

      "name": "Google Apps Script"

    }

  ],

  "step": [

    {

      "@type": "HowToStep",

      "name": "Get Your API Key",

      "text": "Sign up at Token Metrics and generate your API key from the API dashboard."

    },

    {

      "@type": "HowToStep",

      "name": "Create a New Google Sheet",

      "text": "Open a new sheet and list crypto symbols in column A."

    },

    {

      "@type": "HowToStep",

      "name": "Add Apps Script",

      "text": "Go to Extensions > Apps Script and paste the provided code, replacing your API key."

    },

    {

      "@type": "HowToStep",

      "name": "Run the Script",

      "text": "Execute the getSheetData function to pull data into the sheet."

    }

  ]

}

✍️ Final Thoughts

If you're serious about crypto trading or app development, integrating live market signals into your workflow can be a game-changer. With the Token Metrics API, you can get institutional-grade AI signals — right inside Google Sheets.

This setup is simple, fast, and completely free to start. Try it today and unlock a smarter way to trade and build in crypto.

👉 Get Your API Key & Start for Free

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Featured Posts

Crypto Basics Blog

Research Blogs

Announcement Blogs

Unlock the Secrets of Cryptocurrency

Sign Up for the Newsletter for the Exclusive Updates