Text Link
Text Link
Text Link
Text Link
Text Link
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Stop Guessing, Start Trading: The Token Metrics API Advantage

Announcements

Big news: We’re cranking up the heat on AI-driven crypto analytics with the launch of the Token Metrics API and our official SDK (Software Development Kit). This isn’t just an upgrade – it's a quantum leap, giving traders, hedge funds, developers, and institutions direct access to cutting-edge market intelligence, trading signals, and predictive analytics.

Crypto markets move fast, and having real-time, AI-powered insights can be the difference between catching the next big trend or getting left behind. Until now, traders and quants have been wrestling with scattered data, delayed reporting, and a lack of truly predictive analytics. Not anymore.

The Token Metrics API delivers 32+ high-performance endpoints packed with powerful AI-driven insights right into your lap, including:

  • Trading Signals: AI-driven buy/sell recommendations based on real-time market conditions.
  • Investor & Trader Grades: Our proprietary risk-adjusted scoring for assessing crypto assets.
  • Price Predictions: Machine learning-powered forecasts for multiple time frames.
  • Sentiment Analysis: Aggregated insights from social media, news, and market data.
  • Market Indicators: Advanced metrics, including correlation analysis, volatility trends, and macro-level market insights.

Getting started with the Token Metrics API is simple:

  1. Sign up at www.tokenmetrics.com/api
  2. Generate an API key and explore sample requests.
  3. Choose a tier–start with 50 free API calls/month, or stake TMAI tokens for premium access.
  4. Optionally–download the SDK, install it for your preferred programming language, and follow the provided setup guide.

At Token Metrics, we believe data should be decentralized, predictive, and actionable. 

The Token Metrics API & SDK bring next-gen AI-powered crypto intelligence to anyone looking to trade smarter, build better, and stay ahead of the curve. With our official SDK, developers can plug these insights into their own trading bots, dashboards, and research tools – no need to reinvent the wheel.

Research

Understanding REST APIs: Architecture, Security & Best Practices

Token Metrics Team
5
MIN

REST APIs power modern web services by defining a simple, uniform way to access and manipulate resources over HTTP. Whether you are designing an internal microservice, integrating third-party data, or building AI agents that call services programmatically, understanding REST API principles helps you build reliable, maintainable systems. This guide breaks down core concepts, design trade-offs, security controls, and practical patterns you can apply when evaluating or implementing RESTful interfaces.

What is a REST API and when to use it

REST (Representational State Transfer) is an architectural style that uses standard HTTP methods to operate on resources identified by URLs. A REST API typically returns structured representations—most commonly JSON—that describe resources such as users, transactions, or telemetry. REST is well suited for:

  • Stateless interactions where each request carries all necessary information.
  • CRUD-style access to resources using predictable verbs (GET, POST, PUT, PATCH, DELETE).
  • Public or internal APIs that benefit from caching, composability, and clear URL semantics.

REST is not a silver bullet: systems requiring real-time bidirectional streams, complex RPC semantics, or strict schema contracts may favor WebSockets, gRPC, or GraphQL depending on latency and payload requirements.

Core design principles and endpoint structure

Good REST design emphasizes simplicity, consistency, and discoverability. Key guidelines include:

  • Resource-oriented URLs: Use nouns for endpoints (e.g., /orders, /users/123) and avoid verbs in paths.
  • HTTP method semantics: Map CRUD to GET (read), POST (create), PUT/PATCH (update), DELETE (remove).
  • Use status codes consistently: 2xx for success, 4xx for client errors, 5xx for server errors. Provide machine-readable error bodies.
  • Pagination and filtering: For large collections, design cursor-based or offset pagination and allow filtering/sorting via query parameters.
  • Versioning: Plan for breaking changes via versioning strategies—URI versioning (/v1/...), header-based versioning, or content negotiation.

Consider API discoverability through hypermedia (HATEOAS) if you need clients to navigate available actions dynamically. Otherwise, well-documented OpenAPI (Swagger) specifications are essential for developer experience and tooling.

Security, authentication, and rate limiting

Security is critical for any publicly exposed REST API. Core controls include:

  • Authentication: Use standards like OAuth 2.0 or API keys depending on client types. Prefer token-based flows for third-party access.
  • Authorization: Enforce least privilege: ensure endpoints validate scope and role permissions server-side.
  • Transport security: Enforce TLS for all traffic; redirect HTTP to HTTPS and use strong TLS configurations.
  • Rate limiting and quotas: Protect services from abuse and ensure fair use. Provide informative headers (e.g., X-RateLimit-Remaining).
  • Input validation and output encoding: Defend against injection and serialization vulnerabilities by validating and sanitizing inputs and outputs.

For sensitive domains like crypto data feeds or identity, combine monitoring, anomaly detection, and clear incident response procedures. When aggregating external data, validate provenance and apply freshness checks.

Implementation patterns, testing, and observability

From implementation to production readiness, the following practical steps improve reliability:

  1. Schema-first development: Define OpenAPI/JSON Schema early to generate client/server stubs and ensure consistency.
  2. Automated testing: Implement contract tests, integration tests against staging environments, and fuzz tests for edge cases.
  3. Robust logging and tracing: Emit structured logs and distributed traces that include request IDs, latency, and error context.
  4. Backward compatibility: Adopt non-breaking change policies and use feature flags or deprecation windows for clients.
  5. Monitoring and SLIs: Track latency percentiles, error rates, and throughput. Define SLOs and alert thresholds.

When building data-driven applications or AI agents that call APIs, consider data quality checks and retry/backoff strategies to handle transient failures gracefully. For crypto and market-data integrations, specialized providers can simplify ingestion and normalization; for example, Token Metrics is often used as an analytics layer by teams that need standardized signals and ratings.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What are the most important HTTP methods to know for REST APIs?

The primary methods are GET (retrieve), POST (create), PUT/PATCH (update), and DELETE (remove). Each has semantic expectations: GET should be safe and idempotent, while POST is typically non-idempotent. Use PATCH for partial updates and PUT for full replacements when appropriate.

How should I version a REST API without breaking clients?

Common strategies include URI versioning (e.g., /v1/resource), header-based versioning, or content negotiation. Regardless of approach, communicate deprecation timelines, provide migration guides, and support old versions during a transition window.

When is REST not the right choice?

REST may be suboptimal for low-latency bidirectional communication (use WebSockets), strict schema contracts and performance-sensitive RPCs (consider gRPC), or when clients need a single call to fetch heterogeneous nested resources (GraphQL can reduce over-/under-fetching).

How do I document and share an API effectively?

Maintain an OpenAPI specification, host interactive docs (Swagger UI, Redoc), and provide example requests, SDKs, and changelogs. Automated validation against the contract helps keep docs and runtime behavior aligned.

What are key observability metrics for REST APIs?

Track latency (P50/P95/P99), request throughput, error rates by endpoint and status code, database or downstream call latencies, and service saturation metrics (CPU, memory, connection counts). Combine logs, traces, and metrics for faster incident response.

Disclaimer

This article is for educational and informational purposes only. It provides technical analysis of REST API design and operational considerations and does not constitute investment, legal, or regulatory advice. Always perform your own due diligence when integrating external services or handling sensitive data.

Research

Practical Guide to Building and Using REST APIs

Token Metrics Team
6
MIN

REST APIs power much of the modern web: mobile apps, single-page frontends, third-party integrations, and many backend services communicate via RESTful endpoints. This guide breaks down the core principles, design patterns, security considerations, and practical workflows for building and consuming reliable REST APIs. Whether you are evaluating an external API or designing one for production, the frameworks and checklists here will help you ask the right technical questions and set up measurable controls.

What is a REST API and why it matters

REST (Representational State Transfer) is an architectural style for networked applications that uses stateless communication, standard HTTP verbs, and resource-oriented URLs. A REST API exposes resources (users, orders, prices, metadata) as endpoints that clients can retrieve or modify. The simplicity of the model and ubiquity of HTTP make REST a common choice for public APIs and internal microservices.

Key benefits include:

  • Interoperability: Clients and servers can be developed independently as long as they agree on the contract.
  • Scalability: Stateless interactions simplify horizontal scaling and load balancing.
  • Tooling: Broad tool and library support — from Postman to client SDK generators.

Core principles and HTTP methods

Designing a good REST API starts with consistent use of HTTP semantics. The common verbs and their typical uses are:

  • GET — retrieve a representation of a resource; should be safe and idempotent.
  • POST — create a new resource or trigger processing; not idempotent by default.
  • PUT — replace a resource entirely; idempotent.
  • PATCH — apply partial updates to a resource.
  • DELETE — remove a resource.

Good RESTful design also emphasizes:

  • Resource modeling: use nouns for endpoints (/orders, /users/{id}) not verbs.
  • Meaningful status codes: 200, 201, 204, 400, 401, 404, 429, 500 to convey outcomes.
  • HATEOAS (where appropriate): include links in responses to related actions.

Design, documentation, and versioning best practices

Well-documented APIs reduce integration friction and errors. Follow these practical habits:

  1. Start with a contract: define your OpenAPI/Swagger specification before coding. It captures endpoints, data models, query parameters, and error shapes.
  2. Use semantic versioning for breaking changes: /v1/ or header-based versioning helps consumers migrate predictably.
  3. Document error schemas and rate limit behavior clearly so clients can implement backoff and retries.
  4. Support pagination and filtering consistently (cursor-based pagination is more resilient than offset-based for large datasets).
  5. Ship SDKs or client code samples in common languages to accelerate adoption and reduce misuse.

Automate documentation generation and run contract tests as part of CI to detect regressions early.

Security, performance, and monitoring

Security and observability are essential. Practical controls and patterns include:

  • Authentication and authorization: implement OAuth 2.0, API keys, or mutual TLS depending on threat model. Always scope tokens and rotate secrets regularly.
  • Input validation and output encoding to prevent injection attacks and data leaks.
  • Rate limiting, quotas, and request throttling to protect downstream systems during spikes.
  • Use TLS for all traffic and enforce strong cipher suites and certificate pinning where appropriate.
  • Logging, distributed tracing, and metrics: instrument endpoints to measure latency, error rates, and usage patterns. Tools like OpenTelemetry make it easier to correlate traces across microservices.

Security reviews and occasional red-team exercises help identify gaps beyond static checks.

Integrating REST APIs with modern workflows

Consuming and testing REST APIs fits into several common workflows:

  • Exploration: use Postman or curl to verify basic behavior and response shapes.
  • Automation: generate client libraries from OpenAPI specs and include them in CI pipelines to validate integrations automatically.
  • API gateways: centralize authentication, caching, rate limiting, and request shaping to relieve backend services.
  • Monitoring: surface alerts for error budgets and SLA breaches; capture representative traces to debug bottlenecks.

When building sector-specific APIs — for example, price feeds or on-chain data — combining REST endpoints with streaming (webhooks or websockets) can deliver both historical queries and low-latency updates. AI-driven analytics platforms can help synthesize large API outputs into actionable signals and summaries; for example, Token Metrics and similar tools can ingest API data for model-driven analysis without manual aggregation.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

FAQ: Common REST API questions

What is the difference between REST and RESTful?

REST describes the architectural constraints and principles. "RESTful" is commonly used to describe APIs that follow those principles, i.e., resource-based design, stateless interactions, and use of standard HTTP verbs.

How should I handle versioning for a public API?

Expose a clear versioning strategy early. Path versioning (/v1/) is explicit and simple, while header or content negotiation can be more flexible. Regardless of approach, document migration timelines and provide backward compatibility where feasible.

When should I use PATCH vs PUT?

Use PUT to replace a resource fully; use PATCH to apply partial updates. PATCH payloads should be well-defined (JSON Patch or application/merge-patch+json) to avoid ambiguity.

What are common pagination strategies?

Offset-based pagination is easy to implement but can produce inconsistent results with concurrent writes. Cursor-based (opaque token) pagination is more robust for large, frequently changing datasets.

How do I test and validate an API contract?

Use OpenAPI specs combined with contract testing tools that validate servers against the spec. Include integration tests in CI that exercise representative workflows and simulate error conditions and rate limits.

How can I secure public endpoints without impacting developer experience?

Apply tiered access controls: provide limited free access with API keys and rate limits for discovery, and require stronger auth (OAuth, signed requests) for sensitive endpoints. Clear docs and quickstart SDKs reduce friction for legitimate users.

What metrics should I monitor for API health?

Track latency percentiles (p50/p95/p99), error rates by status code, request volume, and authentication failures. Correlate these with infrastructure metrics and traces to identify root causes quickly.

Can REST APIs be used with AI models?

Yes. REST APIs can serve as a data ingestion layer for AI workflows, supplying labeled data, telemetry, and features. Combining batch and streaming APIs allows models to access both historical and near-real-time inputs for inference and retraining.

Are there alternatives to REST I should consider?

GraphQL offers flexible client-driven queries and can reduce overfetching, while gRPC provides efficient binary RPC for internal services. Choose based on client needs, performance constraints, and team expertise.

Disclaimer

This article is educational and technical in nature. It does not provide investment, legal, or regulatory advice. Implementations and design choices should be validated against your organization’s security policies and compliance requirements.

Research

Master REST APIs: Design, Security & Integration

Token Metrics Team
5
MIN

REST APIs are the lingua franca of modern web and data ecosystems. Developers, data scientists, and product teams rely on RESTful endpoints to move structured data between services, power mobile apps, and connect AI models to live data sources. This post explains what REST APIs are, the core principles and methods, practical design patterns, security considerations, and how to evaluate REST APIs for use in crypto and AI workflows.

What is a REST API?

Representational State Transfer (REST) is an architectural style for distributed systems. A REST API exposes resources—such as users, orders, or market ticks—via predictable URLs and HTTP methods. Each resource representation is typically transferred in JSON, XML, or other media types. The API defines endpoints, input and output schemas, and expected status codes so clients can programmatically interact with a server.

Key characteristics include stateless requests, cacheable responses when appropriate, uniform interfaces, and resource-oriented URIs. REST is not a protocol but a set of conventions that favor simplicity, scalability, and composability. These properties make REST APIs well-suited for microservices, web clients, and integrations with analytics or machine learning pipelines.

REST Principles and Core HTTP Methods

Understanding the mapping between REST semantics and HTTP verbs is foundational:

  • GET retrieves a resource or collection; it should be safe and idempotent.
  • POST creates or triggers server-side processes and is generally non-idempotent.
  • PUT replaces a resource and is idempotent.
  • PATCH partially updates a resource.
  • DELETE removes a resource and should also be idempotent.

Designing clear resource names and predictable query parameters improves developer experience. Use nouns for endpoints (e.g., /api/v1/orders) and separate filtering, sorting, and pagination parameters. Well-structured response envelopes with consistent error codes and time stamps help automation and observability.

Designing and Securing REST APIs

Good REST API design balances usability, performance, and security. Start with a contract-first approach: define OpenAPI/Swagger schemas that describe endpoints, request/response shapes, authentication, and error responses. Contracts enable auto-generated clients, mock servers, and validation tooling.

Security considerations include:

  • Authentication: Use OAuth 2.0, API keys, or mutual TLS depending on the trust model. Prefer short-lived tokens and refresh flows for user-facing apps.
  • Authorization: Enforce least privilege via roles, scopes, or claims. Validate permissions on every request.
  • Input validation: Validate and sanitize incoming payloads to prevent injection attacks.
  • Rate limiting & throttling: Protect resources from abuse and ensure predictable QoS.
  • Transport security: Enforce TLS, HSTS, and secure cipher suites for all endpoints.

Operational best practices include logging structured events, exposing health and metrics endpoints, and versioning APIs (e.g., v1, v2) to enable backward-compatible evolution. Use semantic versioning in client libraries and deprecate endpoints with clear timelines and migration guides.

Testing, Monitoring, and Performance Optimization

Testing a REST API includes unit tests for business logic, contract tests against OpenAPI definitions, and end-to-end integration tests. Performance profiling should focus on latency tail behavior, not just averages. Key tools and techniques:

  • Automated contract validation (OpenAPI/Swagger)
  • Load testing for realistic traffic patterns (ramp-up, burst, sustained)
  • Circuit breakers and caching layers for downstream resiliency
  • Observability: distributed tracing, structured logs, and metrics for request rates, errors, and latency percentiles

For AI systems, robust APIs must address reproducibility: include schema versioning and event timestamps so models can be retrained with consistent historical data. For crypto-related systems, ensure on-chain data sources and price oracles expose deterministic endpoints and clearly document freshness guarantees.

REST APIs in Crypto and AI Workflows

REST APIs are frequently used to expose market data, on-chain metrics, historical time-series, and signals that feed AI models or dashboards. When integrating third-party APIs for crypto data, evaluate latency, update frequency, and the provider's methodology for derived metrics. Consider fallbacks and reconciliations: multiple independent endpoints can be polled and compared to detect anomalies or outages.

AI agents often consume REST endpoints for feature extraction and live inference. Design APIs with predictable rate limits and batching endpoints to reduce overhead. Document data lineage: indicate when data is fetched, normalized, or transformed so model training and validation remain auditable.

Tools that combine real-time prices, on-chain insights, and signal generation can accelerate prototyping of analytics and agents. For example, Token Metrics provides AI-driven research and analytics that teams can evaluate as part of their data stack when building integrations.

Build Smarter Crypto Apps & AI Agents with Token Metrics

Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key

What is REST and how does it differ from other API styles?

REST is an architectural style that leverages HTTP methods and resource-oriented URIs. It differs from RPC and SOAP by emphasizing uniform interfaces, statelessness, and resource representations. GraphQL is query-oriented and allows clients to request specific fields, which can reduce over-fetching but requires different server-side handling.

How should I secure a REST API?

Use TLS for transport security, strong authentication (OAuth2, API keys, or mTLS), authorization checks on each endpoint, input validation, rate limiting, and monitoring. Consider short-lived tokens and revoke mechanisms for compromised credentials.

What are best practices for versioning REST APIs?

Adopt explicit versioning (path segments like /v1/), maintain backward compatibility when possible, and provide clear deprecation notices with migration guides. Use semantic versioning for client libraries and contract-first changes to minimize breaking updates.

How do I handle rate limits and throttling?

Implement rate limits per API key or token, and communicate limits via headers (e.g., X-RateLimit-Remaining). Provide exponential backoff guidance for clients and consider burst allowances for intermittent workloads. Monitor usage patterns to adjust thresholds.

What testing and monitoring are essential for production APIs?

Essential practices include unit and contract tests, integration tests, load tests, structured logging, distributed tracing, and alerting on error rates or latency SLA breaches. Health checks and automated failover strategies improve availability.

Disclaimer

This article is for educational and informational purposes only. It does not constitute investment, financial, or legal advice. Evaluate third-party tools and data sources independently and consider compliance requirements relevant to your jurisdiction and project.

Recent Posts

No Item Found
Research

Bearish Signals Ahead? How to Spot Early Warnings Before a Crash

Token Metrics Team
4 min
MIN

In crypto, everything can change overnight. One minute the market’s bullish — the next, it’s bleeding red. That’s why the ability to spot bearish signals early is crucial for protecting capital and maximizing long-term gains. Token Metrics gives traders an edge with AI-driven alerts that help you act before the crash hits.

Why Most Traders Miss the Top
Retail traders often get caught in the hype. By the time “everyone” is talking about a token, it’s usually too late. The smartest investors are watching subtle changes in data: volume drops, negative sentiment, weakening momentum.

Token Metrics makes those patterns visible before price crashes.

What Is a Bearish Signal on Token Metrics?
A bearish signal is a warning based on:

  • Declining Trader Grade (below 30)
  • Negative ROI since signal
  • Volume drying up while price holds
  • Bearish crossover in trend indicators
  • Weakening fundamentals or fading narratives

These signals are automatically triggered and displayed on the Market Page.

How to Identify Bearish Tokens Early

  1. Sort by Negative ROI – See which tokens have declined most after a bold signal.
  2. Filter by Trader Grade < 30 – These are tokens losing short-term momentum.
  3. Look for Divergence – If price is flat but volume or sentiment drops, the setup may be turning bearish.

Behavioral Clues You Shouldn’t Ignore

  • Signal stops updating – Token Metrics halts signals when confidence fades.
  • Narrative dies down – No more tweets, community quiets down? Trouble ahead.
  • Trending to Stagnant – Tokens drop from Top Gainers list quickly.

Real Example: Avoiding Losses with Signal Data
Ian Balina mentioned how users avoided major losses by exiting weak tokens early thanks to falling grades and bearish signals. Instead of hoping, they acted — preserving capital and rotating into stronger plays like Launch Coin or AI tokens.

What to Do When You See Bearish Signs

  • Don’t panic – Act on data, not emotion.
  • Set stop-losses based on bold signal entry points.
  • Rotate capital into high-grade tokens or stablecoins.
  • Monitor daily – The market can flip from bullish to bearish in hours.

Combining Risk Management with Signals
Token Metrics isn’t just about finding moonshots. It’s also about knowing when not to buy or when to exit early. By using bearish signals, you protect yourself from downside while staying positioned for the next big opportunity.

Conclusion
The best crypto traders aren’t just profit-hunters — they’re risk managers. Bearish signals from Token Metrics help you anticipate weakness, reduce losses, and trade with clarity. In a volatile market, that edge can make all the difference.

Research

From Retail to Institutions: Who’s Driving the Crypto Market in 2025?

Token Metrics Team
4 min
MIN

Crypto markets are evolving — and fast. In the early days, retail investors dominated the space. But by 2025, the tides are shifting. Institutional investors, family offices, and algorithmic funds are entering the market at scale. This blog explores the growing divide — and how it’s reshaping opportunities for everyday traders.

The Rise of Institutional Money in Crypto
Over the last year, a new class of investors has emerged: professional firms with deep pockets and long-term horizons. They're no longer just “exploring crypto” — they’re actively deploying capital.

Why now?

  • Regulatory clarity in major jurisdictions
  • Bitcoin ETF approvals and crypto fund launches
  • Better custody, risk management, and analytics tools (including Token Metrics)

What Are Institutions Buying?
Institutions tend to avoid meme coins and hyper-volatility. Instead, they focus on:

  • Layer 1 Infrastructure – Ethereum alternatives like Sui and Avalanche
  • AI Tokens – Leveraging real-world utility and strong narratives
  • DeFi Blue Chips – Projects with consistent TVL and governance upgrades
  • Stable Yield Strategies – On-chain bonds, staking, and real-world asset tokens

Token Metrics has seen a spike in institutional users filtering by Investor Grade and project fundamentals.

Retail Traders Still Dominate One Arena
Retail traders are far from out — they dominate high-volatility narratives:

  • Meme tokens
  • Social coin launches (e.g., Launchcoin)
  • Short-term speculation based on influencer sentiment

Retail’s edge? Speed, risk tolerance, and virality. Many of Token Metrics’ bold signals still originate from this activity before institutions catch on.

Token Metrics Bridging the Divide
What makes Token Metrics powerful in 2025 is its ability to serve both segments:

  • Institutions use it for due diligence, grades, and long-term planning.
  • Retail traders use it for short-term signals, alerts, and narrative tracking.

This dual capability creates a level playing field, where data, not capital, is the edge.

How to Trade Based on Who’s in Control

  1. When institutions lead – expect slower but more sustainable growth. Focus on high Investor Grade tokens.
  2. When retail leads – expect fast-moving pumps and dumps. Use high Trader Grade + bold signals.
  3. Hybrid phase (now) – Use both metrics to balance volatility and long-term conviction.

Market Behavior Patterns to Watch

  • Low volatility + high inflows → Institutional buildup
  • High volume + sudden spikes → Retail-driven narratives
  • Diverging BTC vs. altcoin trends → Mixed sentiment cycles

Conclusion
The crypto market in 2025 is being driven by both the old guard and the new wave. Institutions bring maturity. Retail brings momentum. Smart investors use tools like Token Metrics to read the room — and position themselves accordingly.

Research

Trader vs. Investor Grade: How to Use Both for Smarter Crypto Bets

Token Metrics Team
4 min
MIN

Crypto trading success often boils down to timing. But how do you know when to enter — and when to stay long? Token Metrics solves this dilemma with a dual-grade system: Trader Grade and Investor Grade. Each grade serves a different investment goal, and together, they help you make more confident decisions, whether you’re day trading or holding for the long run.

What is the Trader Grade?
The Trader Grade measures short-term momentum. It uses AI to analyze price action, volume trends, technical indicators, and recent sentiment shifts. Scores range from 0 to 100, and a score above 80 signals strong short-term potential.

Use Case:

  • Perfect for swing traders and short-term opportunists.
  • Look for tokens with Trader Grade > 80 for potential breakout trades.
  • Example: Launchcoin had a Trader Grade above 90 before its 35x rally began.

What is the Investor Grade?
The Investor Grade focuses on long-term fundamentals. It’s designed for those who want to hold tokens for months or even years. This grade considers tokenomics, development activity, ecosystem strength, narrative alignment, and long-term price structure.

Use Case:

  • Ideal for long-term portfolio builders.
  • A token with Investor Grade > 80 is a strong candidate for accumulation.
  • AI infrastructure tokens and modular blockchains often rank high here.

Why Use Both?
Most traders fail by only looking at hype or short-term charts. Token Metrics lets you blend data:

  • High Trader Grade + Low Investor Grade? Consider a short-term trade, not a long hold.
  • High Investor Grade + Low Trader Grade? Consider waiting for a better entry point.
  • Both High? Green light for confidence in both entry and long-term performance.

Case Study: Balancing Your Portfolio with Grades
Users can use the dual-grade approach for smarter allocation:

  • 30% of capital to high Trader Grade tokens (short-term plays)
  • 70% to high Investor Grade tokens (long-term holds)

This method helps mitigate risk and improve overall ROI.

Where to Find the Grades
Both grades are displayed prominently across:

  • Token Detail Pages – Real-time grade updates with historical data
  • Market Page Filters – Sort tokens by grade thresholds
  • Portfolio Builder Tool – Automatically selects tokens with strong grades

Tips for Grade-Based Trading

  1. Use Trader Grade for volatile markets or when prices are accelerating.
  2. Use Investor Grade when building positions in strong narratives like AI, DeFi, or infrastructure.
  3. Avoid tokens with both grades below 60 unless you’re making a speculative bet.

Conclusion
Trading without context is gambling. Token Metrics’ Trader and Investor Grades give you a proven framework for assessing both momentum and fundamentals. Whether you’re here for a quick flip or a long-term bet, using the dual-grade system can level up your crypto strategy.

Announcements

Inside the Dashboard: How to Monitor API Key Activity and Monthly Usage in Real Time

Token Metrics Team
5 min
MIN

The power of any great API isn’t just in the data it provides — it’s also in the control, visibility, and accountability it gives developers. That’s why the Token Metrics API Dashboard is more than just a place to generate keys — it’s your real-time command center for monitoring API key usage, managing access, and optimizing performance.

In this article, we’ll explore how to use the Token Metrics API Dashboard to stay in control of your app’s data usage, track request history, and ensure your integrations remain secure and efficient.

📍 Where to Find It

To access the dashboard:

  1. Log in to your Token Metrics account.
  2. Go to: https://app.tokenmetrics.com/en/api
  3. Navigate to the API Keys and API Usage sections.

🔐 View and Manage API Keys

The API Keys section gives you a complete overview of every active key associated with your account. For each key, you’ll see:

  • Key Name: Descriptive labels like "Bot A" or "Staging Server"
  • Created Date: When the key was generated
  • Last Used: Timestamp of the most recent request
  • Status: Active or inactive toggle
  • Actions: Trash icon to instantly delete a key

💡 Why It Matters:

  • Spot unused or stale keys that may pose a security risk
  • Instantly disable or delete a key if it’s compromised
  • Monitor which app or environment is making the most requests

📊 Monitor API Usage in Real-Time

In the Usage Dashboard, Token Metrics gives you deep insights into how your API credits are being used.

Key metrics include:

  • API Calls Graph
    A daily call volume chart so you can identify peaks in usage, anomalies, or unexpected surges.

  • Total Monthly API Calls
    Example:
    8,750 / 20,000
    See how much of your monthly quota you’ve used — and when it resets.

  • Remaining API Credits
    Know exactly how many calls you have left in your current cycle.

  • API Call Statistics Table
    Each row includes:

    • Endpoint accessed (e.g., /trader-grade)
    • Timestamp of the request
    • Status code (200 = success, 401 = unauthorized, etc.)
    • Originating IP address
    • Success/failure response

🔄 Debugging & Insights Made Easy

This dashboard doesn’t just monitor—it helps you debug and optimize.

  • Quickly identify if your integration is repeatedly hitting 400 or 403 errors
  • Check whether a specific key is being overused or underused
  • Pinpoint spikes in usage that may indicate unauthorized access
  • See which endpoints are called most often — and consider caching results

⚠️ Avoid Rate Limit Surprises

If you’re on a Basic or Advanced plan, you’ll have a rate limit (e.g., 1 req/min for free users, up to 600 req/min for VIPs). The dashboard helps ensure you stay within your limits — and scale appropriately when needed.

🚀 Build Better with Transparency

In a production environment, visibility into API activity is critical. With Token Metrics, you’re never flying blind. You always know:

  • Which app is using which key
  • How many credits you’re using
  • When to optimize or upgrade

From security to scaling, the Token Metrics API Dashboard gives you the insight you need to build with clarity and control.

👉 Launch Your API Dashboard Now → tokenmetrics.com/api

Research

Is the Crypto Market Bullish or Bearish? Why 2025 Is the Year of Neutral Momentum

Token Metrics Team
3 min
MIN

The crypto market isn't clearly bullish or bearish in mid-2025 — it's neutral. This article explores why this 'in-between' momentum could signal a maturing market cycle, and what investors should watch for as signals normalize after a sharp $1T rebound in total market cap.

As we navigate through the midpoint of 2025, one question dominates trading desks and Telegram groups alike: Is the crypto market bullish or bearish? Surprisingly, the answer might be neither. Current indicators suggest that we are in a neutral zone — an ambiguous space where the market is no longer surging with euphoric gains but isn’t plunging into panic either.

From January through mid-May, the total crypto market cap has grown from $1 trillion to $2 trillion. This swift rebound signals recovery, but not full-blown optimism. Instead, many analysts — ourselves included — interpret this as a healthy correction and stabilization following intense early-year volatility.

This kind of environment often marks the early stages of a maturing cycle. Unlike the sharp swings we saw in previous bull and bear markets, 2025’s trend suggests more measured growth, driven by fundamentals rather than hype. In other words, the market might finally be learning from its past.

That doesn’t mean the space lacks activity. Sectors like DeFi lending and AI-related tokens continue to gain traction, with significant TVL inflows. Retail interest in meme coins also remains high in select regions. But overall, what we’re seeing is consolidation — not chaos.

In this neutral setting, strategy matters more than sentiment. It's no longer about jumping into trending narratives or panic-selling on dips. Instead, identifying projects with real use cases, sustainable economics, and strong communities has become the foundation of long-term success.

For traders and builders alike, the current landscape offers both challenges and opportunities. Risk-adjusted returns are key, and disciplined portfolio rebalancing could be one of the most underrated strategies right now.

As we continue monitoring market signals, we remain committed to surfacing actionable insights backed by real-time data, not just narratives. Whether the next breakout is weeks or months away, staying informed — and unemotional — may prove to be your best edge.

How Token Metrics Helps in a Neutral Market Environment:

In times of neutral momentum, making profitable crypto decisions becomes more complex — and that's where Token Metrics shines:

  1. Actionable AI Signals:
    Token Metrics scans thousands of tokens daily, using over 80 data points to identify bullish and bearish trends even when market sentiment is flat. This helps users cut through noise and act on real opportunities.
  2. Investor & Trader Grades:
    When hype fades, fundamentals matter. Our proprietary grades evaluate both short-term momentum and long-term viability, helping users discover tokens with staying power — not just temporary pumps.
  3. Smart Rebalancing Alerts:
    In a consolidating market, maintaining the right portfolio mix is crucial. Token Metrics' indices and alerts help users rebalance regularly to lock in gains and minimize downside risks.
  4. Sector-Based Insights:
    With DeFi, AI, and meme coins behaving differently, Token Metrics allows users to dive deep into sector-specific analytics — so you can position ahead of capital flows.
  5. Sentiment & Volume Monitoring:
    Our platform tracks shifts in on-chain activity, social sentiment, and volume trends to spot early signs of market reversals — especially useful when traditional signals stall.

In a market where being early beats being emotional, Token Metrics equips you with the clarity and tools to trade with confidence.

Announcements

🚀 Announcing the Launch of the Token Metrics API & SDK — Powered by $TMAI

Token Metrics Team
5 min
MIN

Introducing the Token Metrics API: Power Your Crypto Tools with AI-Driven Intelligence

We’re thrilled to announce one of our most important product launches to date: the Token Metrics API is now live.

This powerful crypto API gives developers, quant traders, and crypto startups direct access to the core AI infrastructure that powers the Token Metrics platform. Whether you’re building trading agents, investor dashboards, research tools, or mobile apps, our API and SDKs provide everything you need to build with real-time crypto data and intelligence—right out of the box.

For the first time, you can plug into the same AI API that drives our ratings, signals, and predictions—and embed it directly into your products, tools, or internal systems.

🔍 What’s Inside the Token Metrics API?

Our crypto API is designed to give you high-performance access to the exact data models we use in-house:

✅ AI Trading Signals

Access bullish and bearish calls across thousands of tokens. These API endpoints are powered by machine learning models trained on historical price action, sentiment data, and blockchain activity.

✅ Investor & Trader Grades

Through our API, you can pull dynamic 0–100 grades on any token. Designed for long-term or short-term views, these scores factor in volatility, momentum, market cap trends, and our proprietary AI predictions.

✅ AI Reports & Conversation Crypto Agent

Query the API to generate custom reports and insights using our smart crypto assistant. Analyze market trends, token health, and investment opportunities—without writing your own models.

✅ Token Performance Data

Retrieve token-level analytics like ROI, predictive volatility, and asset rankings. Perfect for powering dashboards, investor tools, or internal models.

✅ Market Sentiment Models

Use the API to access our AI-modeled sentiment engine, built from social media, news data, and trend signals—ideal for gauging crowd psychology.

All Token Metrics API endpoints are RESTful, fast, and easy to integrate. SDKs for Python, Node.js, and other environments help developers onboard quickly.

🛠️ What You Can Build With the Token Metrics API

Our users are already building next-gen tools and automation using the Token Metrics API:

  • 🤖 CEX Trading Agents — Automate entries and exits with real-time signals and token grades
  • ⛓️ DEX Arbitrage Engines — Scan price differences across DeFi and act instantly
  • 📊 Analytics Dashboards — Build data-driven tools with predictive metrics and visualizations
  • 💬 Alert Bots for Telegram & Discord — Deliver actionable alerts using our signal API
  • 📱 Web & Mobile Crypto Apps — Enhance portfolios and research apps with AI intelligence

With just a few lines of code and an API key, you can turn static crypto apps into dynamic, intelligent systems.

💸 Affordable Pricing & $TMAI Utility

We’ve designed our crypto API pricing to be flexible and accessible:

  • Plans start at $99/month, with high usage limits
  • Save up to 35% when you pay with our native token, $TMAI
  • All tiers include access to powerful AI tools and real-time crypto data

Whether you're a solo dev or scaling a trading startup, there’s a plan built for you. Paying with $TMAI also deepens your utility in the Token Metrics ecosystem—this is just the beginning of native token perks.

🧪 Try the Token Metrics API for Free

Not ready to commit? Try our free API tier with:

  • Limited endpoints to explore
  • Access to live documentation and test queries
  • Sample code and SDKs for instant implementation

Start exploring at tokenmetrics.com/api

🌐 Why We Built This Crypto API

Token Metrics has always been focused on empowering smarter investing. But as the market evolves, we believe the future lies in infrastructure, automation, and open access.

That’s why we built the Token Metrics API—to give developers access to the exact AI systems we use ourselves. Our models have been fine-tuned over years, and now, that same intelligence can power your platform, tools, or trading agents.

Whether you're building research platforms, signal-based apps, or automated execution tools—this API is your edge.

⚡ Start Building with Token Metrics API for FREE→ tokenmetrics.com/api

The crypto market never sleeps—and with the Token Metrics API, neither do your tools.

Research

Inside Token Metrics’ Market Page Upgrade: Smarter Signal Discovery

Token Metrics Team
5 min
MIN

Introduction
With thousands of crypto tokens flooding the market, finding the best-performing assets can feel like searching for a needle in a haystack. Token Metrics is solving this with a revamped Market Page experience — designed to surface top signals faster and help users make smarter trading decisions.

Why the Market Page Matters
The Market Page is the heartbeat of Token Metrics' analytics platform. It showcases real-time data on the latest bullish and bearish signals across tokens, providing users with instant access to the platform’s top-rated opportunities. With the recent update, it’s now more powerful and user-friendly than ever.

What’s New in the Market Page?

  1. Top-Performing Signals First – The layout now prioritizes tokens with the highest ROI bold signals. This means the most alpha-generating opportunities are surfaced first — saving users valuable time.
  2. Smarter Filters – Users can sort by return, grade, time frame, and signal type. Want only tokens with a Trader Grade above 80? Just one click away.
  3. Improved Visuals – A cleaner UI now highlights key metrics like entry price, ROI since signal, and latest update date.

How It Helps Traders
This upgrade isn't just cosmetic. It fundamentally changes how traders interact with the platform:

  • Faster decision-making by highlighting the best signals up front
  • Better precision using advanced filters for investor profiles
  • Increased confidence from seeing clear data behind every signal

Case Study: Launch Coin
Launch Coin, the best performing token in 2025 with a 35x return, was identified early thanks to the Market Page’s bold signal tracking. Its signal rose to the top immediately after performance started climbing — helping early users lock in life-changing gains.

How to Use the Market Page Like a Pro

  1. Visit the Market Page daily to track new signal updates
  2. Filter by 24H/7D ROI to catch fast movers
  3. Use Grades to Align with Your Strategy
  4. Follow Narratives: Filter by AI, DeFi, Gaming, and other emerging themes

The Power of Daily Signals
With market conditions changing fast, the daily updates on the Market Page give Token Metrics users an edge — surfacing fresh opportunities before they trend on social media or make headlines.

Conclusion
The new Market Page isn’t just a dashboard — it’s a discovery engine. Designed for both beginner and experienced traders, it brings clarity, speed, and precision to crypto investing.

Research

Bitcoin vs. Altcoin Season: Where the Market's Headed in 2025

Token Metrics Team
5 min
MIN

Introduction
In the ever-evolving world of crypto, understanding the cyclical relationship between Bitcoin and altcoins is crucial for successful trading. During Token Metrics’ latest market update, Ian Balina highlighted key indicators pointing to a shift in momentum — possibly signaling the return of an altcoin season.

What Is Altcoin Season?
Altcoin season is a period in the crypto market where altcoins outperform Bitcoin in terms of price gains. Historically, this shift occurs when Bitcoin stabilizes after a rally, giving room for capital rotation into smaller-cap tokens with higher risk/reward potential.

Bitcoin’s Dominance and the Signs of Rotation
As of May 2025, Bitcoin remains a market anchor, but its dominance is showing signs of plateauing. Ian pointed out that capital is beginning to flow into AI tokens, new infrastructure plays, and community-driven projects like Launchcoin — which has already returned 35x gains. These trends are classic precursors to altcoin season.

Top Performing Altcoins Identified by Token Metrics
Token Metrics’ bold signals have identified several high-performing altcoins, such as:

  • Launchcoin: 35x gain since the signal triggered.
  • AI Infrastructure Tokens: Benefiting from the broader AI narrative in crypto.
  • DeFi 2.0 Protocols: Getting renewed attention amid institutional interest.

Key Indicators to Watch

  1. Bitcoin Dominance Chart – A drop below 50% dominance often precedes altcoin rallies.
  2. Volume Trends – Increasing volume on altcoin pairs indicates rising interest.
  3. Token Metrics Grades – Look for altcoins with high Trader and Investor Grades — a dual signal of short- and long-term strength.

How to Prepare Your Portfolio
Traders should consider gradual rotation — locking in BTC gains and reallocating to top-rated altcoins. Using Token Metrics’ tools:

  • Monitor daily signal updates
  • Filter by Trader Grade > 80 and recent bold signals
  • Keep an eye on AI and DeFi narratives, as they dominate 2025’s momentum

Conclusion
Whether we’re entering a full-blown altcoin season or just a mini-cycle, the signals are clear: capital is rotating. Use data, not guesswork. With Token Metrics’ AI-powered tools, you can identify high-potential opportunities and stay ahead of the curve in both Bitcoin and altcoin markets.

Research

Rise of AI Coins: How AI Narratives Are Fueling the Next Bull Run

Token Metrics Team
4 min
MIN

Introduction
AI is no longer just a tech buzzword — it’s a dominant force driving the next wave of crypto innovation. In 2025, artificial intelligence has found a new frontier: blockchain. From infrastructure protocols to AI-native tokens, the market is seeing a surge in interest, investment, and returns for coins tied to the AI narrative. Token Metrics is at the forefront, helping users identify these explosive opportunities.

Why AI Coins Are Surging
The intersection of AI and crypto isn’t random. Three forces are converging to power this narrative:

  1. Mainstream AI Adoption – With tools like ChatGPT and Claude going mainstream, interest in AI has exploded.
  2. Decentralized Intelligence – Blockchain offers a secure, transparent way to distribute AI models and datasets.
  3. Speculative Momentum – The hype around AI is creating high-risk, high-reward token launches with strong upside potential.

Token Metrics’ AI Token Detection Strategy
Token Metrics uses its proprietary AI to identify early momentum in the market. Here's how it helped surface the best-performing AI tokens:

  • Volume spikes and unusual trading patterns
  • Token grades showing >80 Trader Score
  • Bold signals based on narrative tracking
  • Cross-chain analysis for upcoming projects

Ian Balina noted during the recent webinar that several AI coins have already delivered outsized returns — and this is just the beginning.

Examples of AI Tokens to Watch

  • Launch Coin – While not an AI token itself, its virality shows how fast narratives spread.
  • AI Infrastructure Projects – Platforms building decentralized compute for training and deploying models.
  • AI DeFi Hybrids – Tokens merging machine learning with trading, risk management, or yield optimization.

How to Ride the AI Wave
Using the Token Metrics platform, here’s how to position your portfolio:

  • Use Bold Signals: Sort by AI narrative to find breakout projects.
  • Set Alerts: Monitor new signal generation across top AI narratives.
  • Filter by Grade: Combine high Trader Grade with AI tag for high-conviction trades.

What This Means for Investors
The AI narrative is not a flash in the pan. It represents a paradigm shift in both technology and finance. Tokens that combine utility, vision, and timing will thrive. As always, early entry is key — and that’s where Token Metrics’ daily insights give users the edge.

Conclusion
AI tokens are fueling the next crypto bull run — and the smartest investors are already positioned. With real-time signals, narrative filters, and AI-powered grading, Token Metrics is your map through the chaos. The next big opportunity may already be on the Market Page.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Crypto Basics Blog

Research Blogs

Announcement Blogs

Unlock the Secrets of Cryptocurrency

Sign Up for the Newsletter for the Exclusive Updates