
Every hour you wait is a signal you miss.

Stop Guessing, Start Trading: The Token Metrics API Advantage
Big news: We’re cranking up the heat on AI-driven crypto analytics with the launch of the Token Metrics API and our official SDK (Software Development Kit). This isn’t just an upgrade – it's a quantum leap, giving traders, hedge funds, developers, and institutions direct access to cutting-edge market intelligence, trading signals, and predictive analytics.
Crypto markets move fast, and having real-time, AI-powered insights can be the difference between catching the next big trend or getting left behind. Until now, traders and quants have been wrestling with scattered data, delayed reporting, and a lack of truly predictive analytics. Not anymore.
The Token Metrics API delivers 32+ high-performance endpoints packed with powerful AI-driven insights right into your lap, including:
- Trading Signals: AI-driven buy/sell recommendations based on real-time market conditions.
- Investor & Trader Grades: Our proprietary risk-adjusted scoring for assessing crypto assets.
- Price Predictions: Machine learning-powered forecasts for multiple time frames.
- Sentiment Analysis: Aggregated insights from social media, news, and market data.
- Market Indicators: Advanced metrics, including correlation analysis, volatility trends, and macro-level market insights.
Getting started with the Token Metrics API is simple:
- Sign up at www.tokenmetrics.com/api.
- Generate an API key and explore sample requests.
- Choose a tier–start with 50 free API calls/month, or stake TMAI tokens for premium access.
- Optionally–download the SDK, install it for your preferred programming language, and follow the provided setup guide.
At Token Metrics, we believe data should be decentralized, predictive, and actionable.
The Token Metrics API & SDK bring next-gen AI-powered crypto intelligence to anyone looking to trade smarter, build better, and stay ahead of the curve. With our official SDK, developers can plug these insights into their own trading bots, dashboards, and research tools – no need to reinvent the wheel.
Mastering REST APIs: Principles, Design, Practices
REST APIs power most modern web and mobile back ends by providing a uniform, scalable way to exchange data over HTTP. Whether you are building microservices, connecting AI agents, or integrating third‑party feeds, understanding the architectural principles, design patterns, and operational tradeoffs of REST can help you build reliable systems. This article breaks down core concepts, design best practices, security measures, and practical steps to integrate REST APIs with analytics and AI workflows.
Understanding REST API Fundamentals
REST (Representational State Transfer) is an architectural style for distributed systems. It emphasizes stateless interactions, resource-based URIs, and the use of standard HTTP verbs (GET, POST, PUT, DELETE, PATCH). Key constraints include:
- Statelessness: Each request contains all necessary context, simplifying server design and enabling horizontal scaling.
- Resource orientation: Resources are identified by URIs and represented in formats such as JSON or XML.
- Uniform interface: Consistent use of HTTP methods and status codes improves predictability and interoperability.
When designing APIs, aim for clear resource models, intuitive endpoint naming, and consistent payload shapes. Consider versioning strategies (URL vs header) from day one to avoid breaking clients as your API evolves.
Design Patterns and Best Practices for REST APIs
Good API design balances usability, performance, and maintainability. Adopt these common patterns:
- Resource naming: Use plural nouns (/users, /orders) and hierarchical paths to express relationships.
- HTTP semantics: Map create/read/update/delete to POST/GET/PUT/DELETE and use PATCH for partial updates.
- Pagination and filtering: Return large collections with pagination (cursor or offset) and provide filters and sort parameters.
- Hypermedia (HATEOAS): Include links to related resources when appropriate to make APIs self-descriptive.
- Error handling: Use structured error responses with machine-readable codes and human-friendly messages.
Document endpoints with examples and schemas (OpenAPI/Swagger). Automated documentation and SDK generation reduce integration friction and lower client-side errors.
Securing and Scaling REST APIs
Security and operational resilience are core concerns for production APIs. Consider the following layers:
- Authentication & authorization: Use OAuth2, JWT, or API keys depending on threat model. Keep tokens short-lived and enforce least privilege.
- Input validation: Validate all incoming data to prevent injection and logic vulnerabilities.
- Rate limiting & throttling: Protect backends from abuse and noisy neighbors by implementing quotas and backoff signals.
- Transport security: Enforce TLS (HTTPS) and configure secure ciphers and headers.
- Observability: Expose metrics, structured logs, and distributed traces to troubleshoot latency and failure modes.
For scale, design for statelessness so instances are replaceable, use caching (HTTP cache headers, CDN, or edge caches), and partition data to reduce contention. Use circuit breakers and graceful degradation to maintain partial service during downstream failures.
Integrating REST APIs with AI, Analytics, and Crypto Workflows
REST APIs are frequently used to feed AI models, aggregate on‑chain data, and connect analytics pipelines. Best practices for these integrations include:
- Schema contracts: Define stable, versioned schemas for model inputs and analytics outputs to avoid silent breakages.
- Batch vs streaming: Choose between batch endpoints for bulk processing and streaming/webhook patterns for real‑time events.
- Data provenance: Attach metadata and timestamps so downstream models can account for data freshness and lineage.
- Testing: Use contract tests and synthetic data generators to validate integrations before deploying changes.
To accelerate research workflows and reduce time-to-insight, many teams combine REST APIs with AI-driven analytics. For example, external platforms can provide curated market and on‑chain data through RESTful endpoints that feed model training or signal generation. One such option for consolidated crypto data access is Token Metrics, which can be used as part of an analysis pipeline to augment internal data sources.
Build Smarter Crypto Apps & AI Agents with Token Metrics
Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key
FAQ: Common REST API Questions
What is the difference between REST and RESTful?
REST is an architectural style defined by constraints; "RESTful" describes services that adhere to those principles. In practice, many APIs are called RESTful even if they relax some constraints, such as strict HATEOAS.
When should I version an API and how?
Version early when breaking changes are likely. Common approaches are path versioning (/v1/) or header-based versioning. Path versioning is simpler for clients, while headers keep URLs cleaner. Maintain compatibility guarantees in your documentation.
How do I choose between REST and GraphQL?
REST is straightforward for resource-centric designs and benefits from HTTP caching and simple tooling. GraphQL excels when clients need flexible queries and to reduce over-fetching. Choose based on client needs, caching requirements, and team expertise.
What are practical rate limiting strategies?
Use token bucket or fixed-window counters, and apply limits per API key, IP, or user. Provide rate limit headers and meaningful status codes (429 Too Many Requests) to help clients implement backoff and retry strategies.
How can I test and monitor a REST API effectively?
Combine unit and integration tests with contract tests (OpenAPI-driven). For monitoring, collect metrics (latency, error rates), traces, and structured logs. Synthetic checks and alerting on SLA breaches help detect degradations early.
What is the best way to document an API?
Use OpenAPI/Swagger to provide machine-readable schemas and auto-generate interactive docs. Include examples, authentication instructions, and clear error code tables. Keep docs in version control alongside code.
Disclaimer
This article is educational and informational only. It does not constitute financial, investment, legal, or professional advice. Evaluate tools and services independently and consult appropriate professionals for specific needs.
Mastering REST APIs: Principles, Design, and Best Practices
REST APIs power much of the modern web, mobile apps, and integrations between services. Whether you are building a backend for a product, connecting to external data sources, or composing AI agents that call external endpoints, understanding REST API fundamentals helps you design reliable, maintainable, and performant systems.
What is a REST API and why it matters
Representational State Transfer (REST) is an architectural style that uses simple HTTP verbs to operate on resources identified by URLs. A REST API exposes these resources over HTTP so clients can create, read, update, and delete state in a predictable way. Key benefits include:
- Stateless interactions that simplify scaling and load balancing.
- Uniform interface using standard HTTP verbs (GET, POST, PUT/PATCH, DELETE).
- Human-readable endpoints and predictable behavior for developers and tools.
REST is not a strict protocol; it is a set of constraints that make APIs easier to consume and maintain. Understanding these constraints enables clearer contracts between services and smoother integration with libraries, SDKs, and API gateways.
Core principles and common HTTP methods
Designing a RESTful API starts with resources and consistent use of HTTP semantics. Typical patterns include:
- Resource-oriented URLs: /users/123/orders/456 rather than RPC-style method names.
- HTTP methods: GET for reads, POST for creation, PUT/PATCH for updates, DELETE for deletion.
- Status codes: 200 OK, 201 Created, 204 No Content, 400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found, 429 Too Many Requests, 500 Server Error.
- Content negotiation: Use Accept and Content-Type headers (application/json, application/xml) to support clients.
Use idempotency for safety: GET, PUT, and DELETE should be safe to retry without causing unintended side effects. POST is commonly non-idempotent unless an idempotency key is provided.
Design patterns: pagination, filtering, and versioning
As APIs grow, practical patterns help keep them efficient and stable:
- Pagination: Offer cursor-based or offset-based pagination for collections. Cursor pagination generally performs better at scale.
- Filtering and sorting: Support query parameters (e.g., ?status=active&sort=-created_at) and document allowed fields.
- Versioning: Avoid breaking changes by putting versions in the URL (/v1/) or in headers. Maintain clear deprecation policies and migration guides.
- Hypermedia (HATEOAS): Optionally include links to related resources to help clients discover available actions.
Security, performance, and operational best practices
Security and reliability are essential for production APIs. Consider these practices:
- Authentication & authorization: Prefer OAuth2, JWTs, or API keys depending on your use case. Use scopes and least-privilege access.
- Transport security: Enforce TLS for all endpoints and disable deprecated TLS ciphers.
- Rate limiting and quotas: Protect your backend and provide clear error responses (429) with retry headers.
- Caching: Use HTTP caching headers (Cache-Control, ETag) and CDN fronting for read-heavy endpoints.
- Monitoring and observability: Emit structured logs, metrics, and distributed traces so you can diagnose latency, errors, and bottlenecks.
These controls reduce downtime and make integration predictable for client teams and third-party developers.
Testing, documentation, and developer experience
Good testing and clear docs accelerate adoption and reduce bugs:
- Automated tests: Unit test controllers and routes, and use integration tests against a staging environment or simulated backend.
- Contract testing: Tools like OpenAPI/Swagger and schema validation ensure clients and servers agree on payloads and types.
- Interactive docs and SDKs: Provide OpenAPI specs, example curl commands, and autogenerated client libraries for common languages.
- Postman and CI: Use Postman collections or similar for exploratory testing and include API checks in CI pipelines.
These measures improve developer productivity and reduce the risk of downstream failures when APIs evolve.
Build Smarter Crypto Apps & AI Agents with Token Metrics
Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key
What is the difference between REST and RESTful?
REST is the architectural style; RESTful typically describes APIs that follow REST constraints such as statelessness, resource orientation, and use of HTTP verbs. In practice the terms are often used interchangeably.
When should I use PUT vs PATCH?
PUT generally replaces a full resource and is idempotent; PATCH applies partial changes and may not be idempotent unless designed to be. Choose based on whether clients send full or partial resource representations.
How do I choose between URL versioning and header versioning?
URL versioning (/v1/) is simple and visible to clients, while header versioning is cleaner from a URL standpoint but harder for users to discover. Pick a strategy with a clear migration and deprecation plan.
What are common causes of REST API performance issues?
Typical causes include unoptimized database queries, chatty endpoints that require many requests, lack of caching, and large payloads. Use profiling, caching, and pagination to mitigate these issues.
How can REST APIs support AI agents?
AI agents often orchestrate multiple data sources and services via REST APIs. Well-documented, authenticated, and idempotent endpoints make it safer for agents to request data, trigger workflows, and integrate model outputs into applications.
What tools help with API design and documentation?
OpenAPI/Swagger, Postman, Redoc, and API gateways (e.g., Kong, Apigee) are common. They help standardize schemas, run automated tests, and generate SDKs for multiple languages.
Disclaimer
This article is educational and informational only. It does not constitute professional advice. Evaluate technical choices and platforms based on your project requirements and security needs.
Mastering REST APIs: Design, Security, and Performance
REST APIs are the connective tissue of modern software: from mobile apps to cloud services, they standardize how systems share data. This guide breaks down practical design patterns, security considerations, performance tuning, and testing strategies to help engineers build reliable, maintainable RESTful services.
API Design Principles
Good REST API design balances consistency, discoverability, and simplicity. Start with clear resource modeling — treat nouns as endpoints (e.g., /users, /orders) and use HTTP methods semantically: GET for retrieval, POST for creation, PUT/PATCH for updates, and DELETE for removals. Design predictable URIs, favor plural resource names, and use nested resources sparingly when relationships matter.
Other patterns to consider:
- Use query parameters for filtering, sorting, and pagination (e.g., ?limit=50&offset=100&sort=-created_at).
- Return consistent response shapes and error formats. Standardize on JSON with a clear schema and status codes.
- Document your API with OpenAPI (formerly Swagger) to enable auto-generated docs, client SDKs, and validation.
Authentication & Security
Security is foundational. Choose an authentication model that matches your use case: token-based (OAuth 2.0, JWT) is common for user-facing APIs, while mutual TLS or API keys may suit machine-to-machine communication. Regardless of choice, follow these practices:
- Enforce HTTPS everywhere to protect data-in-transit.
- Implement short-lived tokens plus refresh mechanisms to reduce exposure from leaked credentials.
- Validate and sanitize all inputs to prevent injection attacks; use rate limiting and quotas to mitigate abuse.
- Log access events and monitor for anomalous patterns; retain minimal PII and follow data privacy standards.
Designate clear error codes and messages that avoid leaking sensitive information. Security reviews and threat modeling are essential parts of API lifecycle management.
Performance, Scalability & Reliability
Performance and scalability decisions often shape architecture. Key levers include caching, pagination, and efficient data modeling:
- Use HTTP caching headers (ETag, Cache-Control) to reduce unnecessary payloads.
- Offload heavy queries with background processing and asynchronous endpoints when appropriate.
- Implement pagination for endpoints that return large collections; prefer cursor-based pagination for stable ordering.
- Apply rate limiting and backpressure strategies at the edge to protect downstream systems.
Leverage observability: instrument APIs with metrics (latency, error rates, throughput), distributed tracing, and structured logs. These signals help locate bottlenecks and inform capacity planning. In distributed deployments, design for graceful degradation and retries with exponential backoff to improve resilience.
Testing, Versioning, and Tooling
Robust testing and tooling accelerate safe iteration. Adopt automated tests at multiple levels: unit tests for handlers, integration tests against staging environments, and contract tests to ensure backward compatibility. Use API mocking to validate client behavior early in development.
Versioning strategy matters: embed version in the URL (e.g., /v1/users) or the Accept header. Aim for backwards-compatible changes when possible; when breaking changes are unavoidable, document migration paths.
AI-enhanced tools can assist with schema discovery, test generation, and traffic analysis. For example, Token Metrics and similar platforms illustrate how analytics and automated signals can surface usage patterns and anomalies in request volumes — useful inputs when tuning rate limits or prioritizing endpoints for optimization.
Build Smarter Crypto Apps & AI Agents with Token Metrics
Token Metrics provides real-time prices, trading signals, and on-chain insights all from one powerful API. Grab a Free API Key
FAQ: What is a REST API?
A REST API (Representational State Transfer) is an architectural style for networked applications that uses stateless HTTP requests to manipulate resources represented by URLs and standard methods.
FAQ: How do I secure my REST API?
Secure your API by enforcing HTTPS, using robust authentication (OAuth 2.0, short-lived tokens), validating inputs, applying rate limits, and monitoring access logs for anomalies.
FAQ: When should I use POST vs PUT vs PATCH?
Use POST to create resources, PUT to replace a resource entirely, and PATCH to apply partial updates. Choose semantics that align with client expectations and document them clearly.
FAQ: How do I handle versioning?
Common approaches include URL versioning (/v1/...), header versioning (Accept header), or content negotiation. Prefer backward-compatible changes; when breaking changes are required, communicate deprecation timelines.
FAQ: What are best practices for error handling?
Return appropriate HTTP status codes, provide consistent error bodies with machine-readable codes and human-readable messages, and avoid exposing sensitive internals. Include correlation IDs to aid debugging.
FAQ: How can I test and monitor a production REST API?
Use synthetic monitoring, real-user metrics, health checks, distributed tracing, and automated alerting. Combine unit/integration tests with contract tests and post-deployment smoke checks.
Disclaimer
This article is educational and technical in nature. It does not provide financial, legal, or investment advice. Implementation choices depend on your specific context; consult qualified professionals for regulatory or security-sensitive decisions.
Recent Posts

NFTs Explained: What Are Non-Fungible Tokens?
NFTs, or non-fungible tokens, are gaining widespread popularity in the market for digital art and collectibles. In recent years, NFTs have become a cultural phenomenon, attracting the attention of crypto enthusiasts, digital art creators, and celebrities alike. As the Web 3.0 ecosystem continues to grow and adoption increases, many believe that NFTs will play a key role in the ownership of assets online.
So what are NFTs? Let's find out.
NFT Basics
NFTs, or non-fungible tokens, are a type of digital asset that represents ownership of something on the blockchain.
NFTs can be anything such as art, collectibles, music, profile pictures or PFP, DAO memberships, event tickets, gaming assets, virtual land, domain names, and so on. They can represent either completely digital assets or tokenized versions of assets that exist in the real world. Currently, there is a lot of excitement around using NFTs to sell virtual art.
Characteristics of NFTs
- Ownership: NFT represents digital ownership of an item on a blockchain
- Permanent: NFTs have data permanently stored within the token. This information includes images, messages, signatures, or any other data
- Programmable: An NFT can be programmed to do anything. For example, an NFT artwork might be programmed to pay the artist royalties on every secondary sale of that artwork
- Unique: NFTs are unique, and that uniqueness can be confirmed on a blockchain
How to Make an NFT
To create an NFT, or non-fungible token, you will need to first prepare your media file. NFTs can support a wide range of file types, including audio, images, and even 3D files. Some popular file types that are supported by NFTs include MP3, JPG, PNG, and GIF. You can also use 3D file formats like GLB to create NFTs that represent unique, digital objects.
Once your media is ready, you will need to set up a non-custodial wallet to securely store the cryptocurrency that you will use to buy, sell, and create NFTs. Non-custodial wallets are important because they allow you to retain control of your private keys, which are needed to access your cryptocurrency and make transactions. There are many different wallet options available, so it is important to do your research and choose one that is secure and user-friendly.
Once you have set up your wallet, you will need to buy Ethereum, or other fungible tokens depending on the blockchain being used, to cover the cost of minting your NFT. Ethereum is the most commonly used blockchain for NFTs, and it is typically the easiest to get started with. You can buy Ethereum using a variety of methods, including through a cryptocurrency exchange or from other individuals who are willing to sell.
Once you have your Ethereum, you will need to connect your wallet to an NFT marketplace like Rarible or OpenSea. These platforms allow you to easily create and mint your NFT, as well as trade and purchase NFTs created by others. To connect your wallet, simply tap the "Connect" button in the top right corner of the marketplace's website. This will create an account for you on the platform and allow you to begin creating your NFT.
To create your NFT, upload your media file to the platform and provide a description of your asset. You can choose to create a standalone piece, or create multiple NFTs of the same piece, each with its own unique characteristics. You can also set rules around royalties and other aspects of your NFT to ensure that you are fairly compensated for your work.
Once you are ready to mint your NFT, the process will require you to pay a small amount of ETH for transaction fees. This is necessary to get your NFT added to the blockchain and verified as unique. Once your NFT is minted, it will be available for trade and purchase on the marketplace. You can monitor the progress of your NFT and track its sales through your wallet or the marketplace's website.
NFT Secondary Markets
Creators make NFTs using blockchain-based minting platforms to retain more control over their creative output. Once NFTs are minted on a non-custodial wallet-compatible website, collectors and traders can sell these assets on the secondary market.
Here is a list of the most used NFT marketplaces:
- OpenSea: OpenSea is the first and largest marketplace for NFTs. OpenSea is building tools that allow consumers to trade their items, creators to launch new digital works, and developers to build rich, integrated marketplaces for their digital items. It recently announced the support for Solana-based NFTs.
- Coinbase NFT: Coinbase, a cryptocurrency exchange, recently launched its NFT marketplace in beta version to the public. This marketplace acts as a social media platform in which users can not only buy and sell NFTs but also interact with and showcase their collections using user profiles, likes, and comments.
- Solanart: Solanart is the first and largest fully-fledged NFT marketplace on Solana. Users can get quick and easy access to digital collectibles, and explore, buy, and sell NFTs that run on the Solana blockchain.
- Rarible: Rarible is a do-it-yourself NFT marketplace where you can mint NFTs when and how you please. Creators are highly favorable towards Rarible, as the minting process is free, easy, and unrestricted. Rarible’s native governance token “RARI” is used to incentivize platform users and give the community members a voice.
- Nifty Gateway: Nifty Gateway is owned by the Gemini crypto exchange and has become one of the most known NFT marketplaces lately. They focus on viral drops from artists like Beeple, Trevor Jones, Pak, and more.
- SuperRare: SuperRare (SR) is one of Ethereum’s debut crypto-art NFT marketplaces. Artists must be accepted to the platform before they can list their assets.
Notable NFT Projects
NFT-based companies have seen significant growth in recent years. Some notable examples include:
- Yuga Labs: a blockchain technology company that creates Ethereum-based NFTs and digital collectibles. Yuga's most valuable NFT collection is Bored Ape Yacht Club, which has seen a floor price of over 150 ETH at its all-time high. In addition to apes, Yuga has also created dog NFTs, mutant apes, and deeds for its Metaverse. The company recently acquired Larva Labs, bringing high-value projects like Cryptopunks and Meebits under the Yuga brand. Yuga is backed by investors like Coinbase, Samsung, and Mark Cuban.
- Doodles: a collection of 10,000 Ethereum-based NFTs created by artist BurntToast. The Doodles collection includes a wide range of visual traits, heads, costumes, and colorways. Owners of Doodles NFTs have exclusive access to new experiences like Space Doodles and Dooplicator.
- Okay Bears: a collection of 10,000 Solana-based NFTs. Ownership of an Okay Bear grants access to a community of collectors and exclusive products, merchandise, and events.
Investing in NFTs
NFTs, or non-fungible tokens, provide many benefits as an investment vehicle.
One of the main advantages of NFTs is that they allow physical objects, such as artwork, to be tokenized.
Additionally, NFTs offer greater liquidity for investors, making it easier to trade and sell their assets.
The Future of NFTs
NFTs offer a new way to represent and prove ownership of assets on the blockchain.
This technology has already been used for digital art, collectibles, and in-game assets, but it has the potential to be applied to a wide range of other industries as well. For example, tokenized real estate could provide a way for people to invest in property without the barriers to entry that currently exist.
High-end fashion brands like Louis Vuitton have also expressed interest in using NFTs to track the ownership of luxury items.
Additionally, NFTs can be used to tokenize certifications, degrees, and licenses, providing a way to securely track and maintain this sensitive data on the blockchain.
Overall, the potential applications for NFTs are nearly limitless.

How to Earn Crypto in 2024? 7 Simple Ways [Answered]
If you are looking for ways to earn free crypto this year, in 2024, this is the place to be. Yes, it is possible to earn free cryptocurrency by participating in certain activities or using certain services. For example, some websites and apps offer rewards in the form of cryptocurrency for completing tasks, such as answering surveys or watching videos.
Additionally, some cryptocurrencies, such as Bitcoin and Ethereum, can be earned through a process called mining, in which individuals use their computer's processing power to help verify and record transactions on the blockchain.
However, it is important to be cautious when seeking out opportunities to earn free cryptocurrency, as there are many scams and fraudulent schemes that claim to offer free crypto but actually steal users' personal information or funds. It is always a good idea to thoroughly research any opportunity before participating and to use only trusted and reputable sources.
How to Earn Free Crypto?
Many people never invest in cryptocurrencies due to fear of losing their money, or because they do not have enough money to invest in the first place. However, there are several ways to get cryptocurrencies for free without risking any of your own money.
Let's explore them all.
Learn and Earn Platforms
Learn and Earn platforms are a great way to earn free crypto while also gaining knowledge about the industry. These platforms, such as Coinbase and CoinMarketCap, offer users the opportunity to learn about specific coins and earn rewards in exchange.
To participate in a Learn and Earn platform, users typically need to open an account and pass a KYC verification. Once verified, users can access educational materials and quizzes on the platform, and earn rewards for completing them. These platforms regularly update their offerings, so it is important to check back frequently to see what new opportunities are available.
Airdrops
Airdrops are a popular method of earning free crypto. These are marketing campaigns drawn up by new crypto platforms to gain visibility and increase their customer base. As part of their marketing strategy, these platforms give out free coins to new and existing users in exchange for creating awareness about their project.
To qualify for an airdrop, users must typically be active crypto traders or at least have a crypto wallet. Airdrops can be a win-win for both the trading platform and the user, as the platform gains visibility and the user earns free crypto.
Play-To-Earn Games
Play-to-earn games are a fun and exciting way to earn free crypto. These games allow users to have fun while also earning rewards in the form of crypto. Examples of these games include CoinHunt World, where users can explore a digital environment and earn rewards for finding keys and answering trivia questions, and Crypto Popcoin, where users can earn rewards by grouping cryptocurrencies together and popping them.
To earn actual crypto through these games, users typically need to register their ERC-20 wallet address and have the real crypto token airdropped to their account. Some games may also allow users to earn crypto through their Coinbase account.
Cryptocurrency Dividends
Cryptocurrency dividends are a new way for investors to earn passive income through their digital assets. Similar to traditional stocks, some cryptocurrencies offer dividend payments to their holders as a reward for holding their tokens for a specific period.
These payments can be in the form of additional tokens or other cryptocurrencies, depending on the protocol. For instance, some blockchain networks offer staking rewards to users who lock up their coins to secure the network, while others distribute a portion of their transaction fees to token holders.
By earning crypto through dividends, investors can benefit from both capital appreciation and recurring income, potentially increasing their overall returns on investment. However, as with any investment, it is crucial to do thorough research and assess the risks before committing funds to any cryptocurrency project.
Credit Cards
One way to earn crypto through credit cards is by using a credit card that offers rewards or cashback in the form of cryptocurrency. Several credit card companies now offer rewards in a form of cryptocurrencies. Users can earn rewards on their purchases and then transfer the earned crypto to their digital wallet.
Another option is to use a crypto credit card, which allows users to earn rewards in cryptocurrency directly. These cards work like traditional credit cards, but instead of earning cashback or points, users earn crypto rewards that can be redeemed for various products and services.
Referral Bonuses
Referral bonuses are a common way for people to earn cryptocurrency without necessarily making a direct investment or engaging in trading. Referral programs are typically offered by cryptocurrency exchanges, wallets, and other platforms that offer a commission or bonus for referring new users to their services.
To earn crypto through referral bonuses, individuals simply need to share their unique referral links with friends, family, and acquaintances who might be interested in using the platform. When someone signs up using the link and completes certain actions, such as making a deposit or trading, the referrer receives a bonus in cryptocurrency.
Referral bonuses can vary in size and scope, but they can be a great way to earn crypto passively and without having to invest a significant amount of time or money.
Browser and Search Engine Rewards
Some search engines and browsers, such as Brave and Pre-search, offer rewards in the form of crypto for viewing ads or just browsing. This is a simple and easy way to earn free crypto without having to invest any money.
While earning free crypto can be a great way to get started in the world of cryptocurrency, it is important to be cautious. This is because not all opportunities to earn free crypto are legitimate or safe.
There are many scams and fraudulent schemes that claim to offer free crypto, but are actually designed to steal users' personal information or funds. These scams can take many forms, such as fake airdrops, fake games, or fake search engines that promise rewards but never actually deliver on them.
Conclusion
Therefore, it is important for users to carefully research and verify any opportunity to earn free crypto before participating. They should look for reputable platforms and sources, and be wary of any offers that seem too good to be true.
Additionally, users should always protect their personal information and crypto assets by using secure wallets and following best practices for online security.
Disclaimer
The information provided on this website does not constitute investment advice, financial advice, trading advice, or any other advice, and you should not treat any of the website's content as such.
Token Metrics does not recommend buying, selling, or holding any cryptocurrency. Conduct your due diligence and consult your financial advisor before making investment decisions.

What is Web 3.0? Web 1 vs Web 2 vs Web 3 | Explained
If you're wondering what is Web 3, this is the place to be.
In this article, we'll learn more about the evolution of web over time, and what's next.
Evolution of Web
Being around for 3 decades, the internet has gone through multiple stages of evolution. With each evolution comes new tools and applications relevant to modern-day users, leading us to Web 3.0.
The first generation of the web is called Web 1.0. As the earliest version of the internet, it is known as the “read-only web”. As its name implies, web users can look up facts and information and read upon it. Websites were basic and had very limited functions.
When it comes to Web 1.0, there is a lack of interactions that takes place between online internet content and internet users. Sites are not interactive and there are no contributions, alterations, or impacts that can be made by the average website visitor. Most common from the 1990s to 2005, Web 1.0 connected information with users.
This lack of interaction made Web 1.0 flat and stationary. As the name suggests, “the read-only Web” lacks the forms, visuals, controls, and interactivity we enjoy on today’s Internet. The developers of Web 1.0 sites typically build their sites and develop in text or graphic format.
Static websites and personal sites would be considered part of Web 1.0. Unlike today where many websites aim for high traffic and user return rates, content distributed on Web 1.0 may be useful but does not give people a reason to return.
Web 3.0, also known as the semantic web, is the current stage of the evolution of the web. It is characterized by the use of artificial intelligence and machine learning to create a more intuitive and personalized web experience.
Web 3.0 also enables the integration of data from multiple sources and the creation of intelligent, self-learning systems that can understand the meaning and context of information on the web. This stage of the web is still in development, but it promises to bring significant advancements in terms of user experience and the ability of the web to connect and analyze data.
Web 3.0 – The New Internet
The future stages of the internet will be built on public blockchains. Blockchains are distributed databases that are shared among a number of computer networks. Web 3.0 is decentralized, which means there is no central authority. This is possible because with Web 3.0, information is stored in multiple locations concurrently.
Additionally, because it is trustless and permissionless, anyone can interact with the web without permission from a middleman. This gives users the freedom to interact with the web privately or publicly without having to trust a middleman.
With Web 3.0, individuals finally have the ability to own and govern parts of the internet, rather than relying on companies like Google or Facebook to access it.
Web 3.0 is still very new, and we have not even come close to unlocking its full potential. Characteristics of Web 3.0 can already be seen in blockchain games, the Metaverse, and decentralized finance.
In short, Web 3.0 allows users to interact, exchange information, and securely facilitate different types of transactions without a central authority, which means that Web 3.0 users become content owners rather than just content users.
Advantages of Web 3.0
Web 3.0 offers several key benefits to users, including:
- Ownership and control of personal data and information: In Web 3.0, control and access to personal data and information is returned to the user. This means that users will have complete ownership and control over their data, while still being able to share it on a permission-based or case-by-case basis.
- Access to information from anywhere: One of the main benefits of Web 3.0 is the ability to access data and information from anywhere, using only a smartphone or computer. This technology aims to expand on current ideas and allow devices to collect and share user data, making it more widely accessible.
- Elimination of centralized control: Web 3.0 and blockchain technology allow for the creation of decentralized networks, where data is fully encrypted and unmodifiable. This eliminates the need for intermediaries, such as large companies or governments, to control user data.
- Permissionless blockchain technology: In Web 3.0, anyone can create an address and interact with the blockchain network with complete privacy and security. This means that users are not required to go through any kind of verification process, such as KYC checks, in order to access and use blockchain services.
- Constant availability of services: The use of decentralized networks and encrypted data storage in Web 3.0 means that services are less likely to be suspended or disrupted. Since there is no single point of failure, service disruption is minimized and users have constant access to their data.
Disadvantages of Web 3.0
However, there are also disadvantages to Web 3.0, including:
- Potential for increased cyber attacks: Decentralized networks and encrypted data storage make it more difficult for hackers to access and modify user data. However, this also makes it more difficult for security experts to detect and prevent attacks.
- Need for infrastructure changes: In order for Web 3.0 to be fully adopted, significant changes to current infrastructure will be necessary. This includes changes to network protocols and the development of new software and hardware.
- Early stage of development: Web 3.0 is still in its early stages of development, and has yet to be widely adopted. This means that there are still many challenges and uncertainties associated with the technology.
- Lack of understanding and education: Many people are not familiar with the concept of Web 3.0 and the benefits it offers. This lack of understanding can make it difficult for the technology to gain widespread acceptance.
Key Takeaways
The development of Web 3.0 represents a significant advancement in technology, offering users the ability to read, write, and own data and information. This technology is still in its early stages, but has the potential to break into other industries and change the way we think about data and information ownership. While there are benefits to using Web 3.0, there are also risks involved.
It is up to individuals to determine whether the rewards of using this technology outweigh the potential drawbacks. Overall, the development of Web 3.0 is a major event in the history of modern technology.

How To Find New Crypto Coins? Finding Cryptocurrency Projects
If you are wondering how to find new crypto coins, this is the place to be.
Finding new crypto coins has become important since the rise of Bitcoin and the wealth gained by early investors. The crypto market has experienced a surge of new investors who hope to find the next big coin, but many are unsure of how to navigate the space and identify new coins. It can be exciting to discover new coins, but it's important to beware of scams like the Squid token that exploited the popularity of the Squid Game movie series. Before looking for new crypto coins, here are some points to consider before making an investment decision.
Checklist Before Investing:
A project's whitepaper is a good starting point for researching a new crypto project. Most new crypto projects have a whitepaper or official document that includes information such as the project's use case, tokenomics, team members, and roadmap. The presence or absence of a whitepaper can tell you a lot about the project's seriousness. While reading a project's whitepaper, there are a few things to look out for:
Use case: This is the main problem that the crypto project is trying to solve, or its unique function. For example, there are several Layer 2 projects that aim to improve the low latency and transaction times of traditional blockchains without compromising security and decentralization.
Tokenomics / Token Economics: This is the basic plan for how the project's new crypto tokens will be distributed. This includes how many tokens will go to the founding team, advisors, how many will be available for sale to the community, how many will be in the treasury, and what type of token it will be (deflationary or inflationary, with a limited or unlimited supply).
Lock-up period: This is the period of time that the founding team agrees to lock up their tokens before they can access them. A longer lock-up period can give investors more confidence in the project's long-term commitment.
Founding team: It's important to check the background of the project's founding team. Are they experienced, do their backgrounds match the project, and do they have any fraudulent history with past projects? The profiles of the advisors and investors/backers of the project can also be useful.
Social virality: Decentralization is at the core of crypto, so projects are often community-driven. The growth of the project's community can be a good indicator of investor confidence. Twitter, Telegram, and Discord are popular platforms for building crypto communities.
Roadmap: The project's roadmap contains its major plans and timeline. This can indicate the project's seriousness, especially when compared to what they have accomplished. Have they achieved any of the earlier plans on the roadmap within the specified timeline?
In addition, looking at the number of people on the project's watchlist, and whether it is listed on CoinMarketCap.com or CoinGecko, can also be a good confidence booster.
How to Find New Crypto Coins
Before new crypto coins are listed on exchanges, they are often first offered as Initial Coin Offerings (ICOs), Initial Exchange Offerings (IEOs), or Initial Dex Offerings (IDOs). These offerings give investors the opportunity to get in early on projects before they go mainstream. This is where early investors can get into major projects before they are listed on crypto exchanges.
There are several platforms that feature upcoming crypto projects, including:
- Top ICO List: This website provides white papers and one-pagers of ICOs of new crypto coins. You can find a comprehensive list of ICOs and information on some of the best ICOs in the market, as well as information on past ICOs to use as a benchmark for evaluating the performance of ICOs you are considering.
- CoinGecko: This is a useful tool for crypto traders and investors to stay up to date with the market. It provides real-time prices of cryptocurrencies from multiple exchanges, as well as other important information about different cryptocurrencies, such as their historic performance data, community, and insights into the coin development. CoinGecko also provides an ICO list of new crypto coins with relevant information about the new crypto coin/project.
- CoinMarketCap: Like CoinGecko, CoinMarketCap is an alternative that some investors use to find new crypto coins. It provides a list of ICOs and relevant information, as well as information on hundreds of other crypto projects and actionable data. The watchlist feature is also useful for seeing how many people are interested in a project.
- ICO Bench: This is a useful tool for finding new crypto coins. ICO Bench is an ICO grading website that uses crowdsourced ratings from crypto traders and experts. The experts evaluate projects using various parameters and grade them accordingly.
- Token Metrics: Token Metrics is another great resource for finding new cryptocurrencies with its research, deep dives, AI, and more. The best part is that you can use Token Metrics to evaluate whether the newly found project is good or bad and decide whether you should spend more time researching it further.
With over 10,000+ crypto coins, there are many opportunities out there. But there are also many shady platforms and crypto projects, so it's important to know how to find crypto with potential and make sure the projects are viable. Using the tips above can help you do that.
Featured Posts
NFT's Blogs
Crypto Basics Blog
Research Blogs
Announcement Blogs



9450 SW Gemini Dr
PMB 59348
Beaverton, Oregon 97008-7105 US
No Credit Card Required

Online Payment
SSL Encrypted
.png)
Products
Subscribe to Newsletter
Token Metrics Media LLC is a regular publication of information, analysis, and commentary focused especially on blockchain technology and business, cryptocurrency, blockchain-based tokens, market trends, and trading strategies.
Token Metrics Media LLC does not provide individually tailored investment advice and does not take a subscriber’s or anyone’s personal circumstances into consideration when discussing investments; nor is Token Metrics Advisers LLC registered as an investment adviser or broker-dealer in any jurisdiction.
Information contained herein is not an offer or solicitation to buy, hold, or sell any security. The Token Metrics team has advised and invested in many blockchain companies. A complete list of their advisory roles and current holdings can be viewed here: https://tokenmetrics.com/disclosures.html/
Token Metrics Media LLC relies on information from various sources believed to be reliable, including clients and third parties, but cannot guarantee the accuracy and completeness of that information. Additionally, Token Metrics Media LLC does not provide tax advice, and investors are encouraged to consult with their personal tax advisors.
All investing involves risk, including the possible loss of money you invest, and past performance does not guarantee future performance. Ratings and price predictions are provided for informational and illustrative purposes, and may not reflect actual future performance.